ﻻ يوجد ملخص باللغة العربية
Commonsense knowledge is essential for many AI applications, including those in natural language processing, visual processing, and planning. Consequently, many sources that include commonsense knowledge have been designed and constructed over the past decades. Recently, the focus has been on large text-based sources, which facilitate easier integration with neural (language) models and application to textual tasks, typically at the expense of the semantics of the sources and their harmonization. Efforts to consolidate commonsense knowledge have yielded partial success, with no clear path towards a comprehensive solution. We aim to organize these sources around a common set of dimensions of commonsense knowledge. We survey a wide range of popular commonsense sources with a special focus on their relations. We consolidate these relations into 13 knowledge dimensions. This consolidation allows us to unify the separate sources and to compute indications of their coverage, overlap, and gaps with respect to the knowledge dimensions. Moreover, we analyze the impact of each dimension on downstream reasoning tasks that require commonsense knowledge, observing that the temporal and desire/goal dimensions are very beneficial for reasoning on current downstream tasks, while distinctness and lexical knowledge have little impact. These results reveal preferences for some dimensions in current evaluation, and potential neglect of others.
Wikidata and Wikipedia have been proven useful for reason-ing in natural language applications, like question answering or entitylinking. Yet, no existing work has studied the potential of Wikidata for commonsense reasoning. This paper investigates w
Sources of commonsense knowledge support applications in natural language understanding, computer vision, and knowledge graphs. Given their complementarity, their integration is desired. Yet, their different foci, modeling approaches, and sparse over
Commonsense knowledge (CSK) about concepts and their properties is useful for AI applications such as robust chatbots. Prior works like ConceptNet, TupleKB and others compiled large CSK collections, but are restricted in their expressiveness to subje
Commonsense knowledge acquisition is a key problem for artificial intelligence. Conventional methods of acquiring commonsense knowledge generally require laborious and costly human annotations, which are not feasible on a large scale. In this paper,
Compiling commonsense knowledge is traditionally an AI topic approached by manual labor. Recent advances in web data processing have enabled automated approaches. In this demonstration we will showcase three systems for automated commonsense knowledg