ﻻ يوجد ملخص باللغة العربية
Subspace methods are essential to high-resolution environment sensing in the emerging unmanned systems, if further combined with the millimeter-wave (mm-Wave) massive multi-input multi-output (MIMO) technique. The estimation of signal/noise subspace, as one critical step, is yet computationally complex and presents a particular challenge when developing high-resolution yet low-complexity automotive radars. In this work, we develop a fast randomized-MUSIC (R-MUSIC) algorithm, which exploits the random matrix sketching to estimate the signal subspace via approximated computation. Our new approach substantially reduces the time complexity in acquiring a high-quality signal subspace. Moreover, the accuracy of R-MUSIC suffers no degradation unlike others low-complexity counterparts, i.e. the high-resolution angle of arrival (AoA) estimation is attained. Numerical simulations are provided to validate the performance of our R-MUSIC method. As shown, it resolves the long-standing contradiction in complexity and accuracy of MIMO radar signal processing, which hence have great potentials in real-time super-resolution automotive sensing.
While mmWave bands provide a large bandwidth for mobile broadband services, they suffer from severe path loss and shadowing. Multiple-antenna techniques such as beamforming (BF) can be applied to compensate the signal attenuation. We consider a speci
This paper presents LuMaMi28, a real-time 28 GHz massive multiple-input multiple-output (MIMO) testbed. In this testbed, the base station has 16 transceiver chains with a fully-digital beamforming architecture (with different pre-coding algorithms) a
In this paper, a framework of beamspace channel estimation in millimeter wave (mmWave) massive MIMO system is proposed. The framework includes the design of hybrid precoding and combining matrix as well as the search method for the largest entry of o
The high energy consumption of massive multi-input multi-out (MIMO) system has become a prominent problem in the millimeter wave(mm-Wave) communication scenario. The hybrid precoding technology greatly reduces the number of radio frequency(RF) chains
Next generation wireless base stations and access points will transmit and receive using extremely massive numbers of antennas. A promising technology for realizing such massive arrays in a dynamically controllable and scalable manner with reduced co