ﻻ يوجد ملخص باللغة العربية
Polar skyrmions are theoretically predicted to emerge resulting from the interplay of elastic, electrostatic and gradient energies, in contrast to the key role of the anti-symmetric Dzyalozhinskii-Moriya interaction in magnetic skyrmions. With the discovery of topologically stable polar skyrmions reported by Das et al., (Nature 568, 368, 2019), it is of both fundamental and practical interest to understand the microscopic nature and the possibility of temperature- and strain-driven phase transitions in ensembles of such polar skyrmions. Here, we explore the emergence of a two-dimensional, tetratic lattice of merons (with topological charge of +1/2) from a skyrmion state (topological charge of +1) upon varying the temperature and elastic boundary conditions in [(PbTiO$_3$)$_{16}$/(SrTiO$_3$)$_{16}$]$_8$ lifted-off membranes. Such a topological phase transition is accompanied by a change in chirality, e.g. from left-handed to zero-net chirality, as measured by four-dimensional scanning transmission electron microscopy (4D-STEM). We show how 4D-STEM provides a robust measure of the local polarization simultaneously with the strain state at sub-nm resolution, while directly revealing the origins of chirality in each skyrmion. Using this, we demonstrate strain as a crucial order parameter to drive isotropic-to-anisotropic structural transitions of chiral polar skyrmions to non-chiral merons, validated with X-ray reciprocal space mapping and theoretical phase-field simulations. These results provide the first illustration of systematic control of rich variety of topological dipole textures by altering the mechanical boundary conditions, which may offer a promising way to control their functionalities in ferroelectric nanodevices using the local and spatial distribution of chirality and order for potential applications.
Room-temperature polar skyrmion bubbles that are recently found in oxide superlattice, have received enormous interests for their potential applications in nanoelectronics due to the nanometer size, emergent chirality, and negative capacitance. For p
Chirality, an intrinsic handedness, is one of the most intriguing fundamental phenomena in nature. Materials composed of chiral molecules find broad applications in areas ranging from nonlinear optics and spintronics to biology and pharmaceuticals. H
A magnetic skyrmion is a topological object that can exist as a solitary embedded in the vast ferromagnetic phase, or coexists with a group of its siblings in various stripy phases as well as skyrmion crystals (SkXs). Isolated skyrmions and skyrmions
We report spin-current generation related with skyrmion dynamics resonantly excited by a microwave in a helimagnetic insulator $mathrm{Cu_2OSeO_3}$. A Pt layer was fabricated on $mathrm{Cu_2OSeO_3}$ and voltage in the Pt layer was measured upon magne
In this work, the current-induced inertial effects on skyrmions hosted in ferromagnetic systems are studied. {When the dynamics is considered beyond the particle-like description, magnetic skyrmions can deform due to a self-induced field. We perform