ﻻ يوجد ملخص باللغة العربية
The formation of a substantial post-disruption runaway electron current in ASDEX Upgrade material injection experiments is determined by avalanche multiplication of a small seed population of runaway electrons. For the investigation of these scenarios, the runaway electron description of the coupled 1.5D transport solvers ASTRA-STRAHL is amended by a fluid-model describing electron runaway caused by the hot-tail mechanism. Applied in simulations of combined background plasma evolution, material injection, and runaway electron generation in ASDEX Upgrade discharge #33108, both the Dreicer and hot-tail mechanism for electron runaway produce only $sim$ 3$~$kA of runaway current. In colder plasmas with core electron temperatures $T_mathrm{e,c}$ below 9$~$keV, the post-disruption runaway current is predicted to be insensitive to the initial temperature, in agreement with experimental observations. Yet in hotter plasmas with $T_mathrm{e,c} > 10~mathrm{keV}$, hot-tail runaway can be increased by up to an order of magnitude, contributing considerably to the total post-disruption runaway current. In ASDEX Upgrade high temperature runaway experiments, however, no runaway current is observed at the end of the disruption, despite favourable conditions for both primary and secondary runaway.
We present the first successful simulation of a induced disruption in ASDEX Upgrade from massive material injection (MMI) up to established runaway electron (RE) beam, thus covering pre-thermal quench, thermal quench and current quench (CQ) of the di
Synchrotron radiation images from runaway electrons (REs) in an ASDEX Upgrade discharge disrupted by argon injection are analyzed using the synchrotron diagnostic tool SOFT and coupled fluid-kinetic simulations. We show that the evolution of the runa
Results from the last FTU campaigns on the deuterium large (wrt FTU volume) pellet REs suppression capability, mainly due to the induced burst MHD activity expelling REs seed are presented for discharges with 0.5 MA and 5.3T. Clear indications of ava
The I-mode confinement regime can feature small edge temperature drops that can lead to an increase in the energy deposited onto the divertor targets. In this work, we show that these events are associated with a relaxation of both electron temperatu
The linear destabilization and nonlinear saturation of energetic-particle driven Alfvenic instabilities in tokamaks strongly depend on the damping channels. In this work, the collisionless damping mechanisms of Alfvenic modes are investigated within