ترغب بنشر مسار تعليمي؟ اضغط هنا

Latency Minimization in Intelligent Reflecting Surface Assisted D2D Offloading Systems

81   0   0.0 ( 0 )
 نشر من قبل Yanzhen Liu
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this letter, we investigate an intelligent reflecting surface (IRS) aided device-to-device (D2D) offloading system, where an IRS is employed to assist in computation offloading from a group of users with intensive tasks to another group of idle users. We propose a new two-timescale joint passive beamforming and resource allocation algorithm based on stochastic successive convex approximation to minimize the system latency while cutting down the heavy overhead in exchange of channel state information (CSI). Specifically, the high-dimensional passive beamforming vector at the IRS is updated in a frame-based manner based on the channel statistics, where each frame consists of a number of time slots, while the offloading ratio and user matching strategy are optimized relied on the low-dimensional real-time effective channel coefficients in each time slot. The convergence property and the computational complexity of the proposed algorithm are also examined. Simulation results show that our proposed algorithm significantly outperforms the conventional benchmarks.



قيم البحث

اقرأ أيضاً

In this paper, we propose a deep reinforcement learning (DRL) approach for solving the optimisation problem of the networks sum-rate in device-to-device (D2D) communications supported by an intelligent reflecting surface (IRS). The IRS is deployed to mitigate the interference and enhance the signal between the D2D transmitter and the associated D2D receiver. Our objective is to jointly optimise the transmit power at the D2D transmitter and the phase shift matrix at the IRS to maximise the network sum-rate. We formulate a Markov decision process and then propose the proximal policy optimisation for solving the maximisation game. Simulation results show impressive performance in terms of the achievable rate and processing time.
Intelligent reflecting surfaces (IRSs) constitute passive devices, which are capable of adjusting the phase shifts of their reflected signals, and hence they are suitable for passive beamforming. In this paper, we conceive their design with the activ e beamforming action of multiple-input multipleoutput (MIMO) systems used at the access points (APs) for improving the beamforming gain, where both the APs and users are equipped with multiple antennas. Firstly, we decouple the optimization problem and design the active beamforming for a given IRS configuration. Then we transform the optimization problem of the IRS-based passive beamforming design into a tractable non-convex quadratically constrained quadratic program (QCQP). For solving the transformed problem, we give an approximate solution based on the technique of widely used semidefinite relaxation (SDR). We also propose a low-complexity iterative solution. We further prove that it can converge to a locally optimal value. Finally, considering the practical scenario of discrete phase shifts at the IRS, we give the quantization design for IRS elements on basis of the two solutions. Our simulation results demonstrate the superiority of the proposed solutions over the relevant benchmarks.
Cognitive radio (CR) is an effective solution to improve the spectral efficiency (SE) of wireless communications by allowing the secondary users (SUs) to share spectrum with primary users. Meanwhile, intelligent reflecting surface (IRS), also known a s reconfigurable intelligent surface (RIS), has been recently proposed as a promising approach to enhance energy efficiency (EE) of wireless communication systems through intelligently reconfiguring the channel environment. To improve both SE and EE, in this paper, we introduce multiple IRSs to a downlink multiple-input single-output (MISO) CR system, in which a single SU coexists with a primary network with multiple primary user receivers (PU-RXs). Our design objective is to maximize the achievable rate of SU subject to a total transmit power constraint on the SU transmitter (SU-TX) and interference temperature constraints on the PU-RXs, by jointly optimizing the beamforming at SU-TX and the reflecting coefficients at each IRS. Both perfect and imperfect channel state information (CSI) cases are considered in the optimization. Numerical results demonstrate that the introduction of IRS can significantly improve the achievable rate of SU under both perfect and imperfect CSI cases.
This paper investigates the uplink cascaded channel estimation for intelligent-reflecting-surface (IRS)-assisted multi-user multiple-input-single-output systems. We focus on a sub-6 GHz scenario where the channel propagation is not sparse and the num ber of IRS elements can be larger than the number of BS antennas. A novel channel estimation protocol without the need of on-off amplitude control to avoid the reflection power loss is proposed. In addition, the pilot overhead is substantially reduced by exploiting the common-link structure to decompose the cascaded channel coefficients by the multiplication of the common-link variables and the user-specific variables. However, these two types of variables are highly coupled, which makes them difficult to estimate. To address this issue, we formulate an optimization-based joint channel estimation problem, which only utilizes the covariance of the cascaded channel. Then, we design a low-complexity alternating optimization algorithm with efficient initialization for the non-convex optimization problem, which achieves a local optimum solution. To further enhance the estimation accuracy, we propose a new formulation to optimize the training phase shifting configuration for the proposed protocol, and then solve it using the successive convex approximation algorithm. Comprehensive simulations verify that the proposed algorithm has supreme performance compared to various state-of-the-art baseline schemes.
This paper investigates a device-to-device (D2D) cooperative computing system, where an user can offload part of its computation task to nearby idle users with the aid of an intelligent reflecting surface (IRS). We propose to minimize the total compu ting delay via jointly optimizing the computation task assignment, transmit power, bandwidth allocation, and phase beamforming of the IRS. To solve the formulated problem, we devise an alternating optimization algorithm with guaranteed convergence. In particular, the task assignment strategy is derived in closed-form expression, while the phase beamforming is optimized by exploiting the semi-definite relaxation (SDR) method. Numerical results demonstrate that the IRS enhanced D2D cooperative computing scheme can achieve a much lower computing delay as compared to the conventional D2D cooperative computing strategy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا