ﻻ يوجد ملخص باللغة العربية
Stalagmites are an extraordinarily powerful resource for the reconstruction of climatological palaeoseasonality. Here, we provide a comprehensive review of different types of seasonality preserved by stalagmites and methods for extracting this information. A new drip classification scheme is introduced, which facilitates the identification of stalagmites fed by seasonally responsive drips and which highlights the wide variability in drip types feeding stalagmites. This hydrological variability, combined with seasonality in Earth atmospheric processes, meteoric precipitation, biological processes within the soil, and cave atmosphere composition means that every stalagmite retains a different and distinct (but correct) record of environmental conditions. Replication of a record is extremely useful but should not be expected unless comparing stalagmites affected by the same processes in the same proportion. A short overview of common microanalytical techniques is presented, and suggested best practice discussed. In addition to geochemical methods, a new modelling technique for extracting meteoric precipitation and temperature palaeoseasonality from stalagmite d18O data is discussed and tested with both synthetic and real-world datasets. Finally, world maps of temperature, meteoric precipitation amount, and meteoric precipitation oxygen isotope ratio seasonality are presented and discussed, with an aim of helping to identify regions most sensitive to shifts in seasonality.
Regional characterization of the continental crust has classically been performed through either geologic mapping, geochemical sampling, or geophysical surveys. Rarely are these techniques fully integrated, due to limits of data coverage, quality, an
The dissolution of porous media in a geologic formation induced by the injection of massive amounts of CO2 can undermine the mechanical stability of the formation structure before carbon mineralization takes place. The geomechanical impact of geologi
Quantum entanglement is a key resource in quantum technology, and its quantification is a vital task in the current Noisy Intermediate-Scale Quantum (NISQ) era. This paper combines hybrid quantum-classical computation and quasi-probability decomposit
Experimental microstylolites have been observed at stressed contacts between quartz grains loaded for several weeks in the presence of an aqueous silica solution, at 350 8C and 50 MPa of differential stress. Stereoscopic analysis of pairs of SEM imag
In countries with a moderate seismic hazard, the classical methods developed for strong motion prone countries to estimate the seismic behaviour and subsequent vulnerability of existing buildings are often inadequate and not financially realistic. Th