ترغب بنشر مسار تعليمي؟ اضغط هنا

Empirical Model of 10-130 MeV Solar Energetic Particle Spectra at 1 AU Based on Coronal Mass Ejection Speed and Direction

84   0   0.0 ( 0 )
 نشر من قبل Alessandro Bruno
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new empirical model to predict solar energetic particle (SEP) event-integrated and peak intensity spectra between 10 and 130 MeV at 1 AU, based on multi-point spacecraft measurements from the Solar TErrestrial RElations Observatory (STEREO), the Geostationary Operational Environmental Satellites (GOES) and the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) satellite experiment. The analyzed data sample includes 32 SEP events occurring between 2010 and 2014, with a statistically significant proton signal at energies in excess of a few tens of MeV, unambiguously recorded at three spacecraft locations. The spatial distributions of SEP intensities are reconstructed by assuming an energy-dependent 2D Gaussian functional form, and accounting for the correlation between the intensity and the speed of the parent coronal mass ejection (CME), and the magnetic field line connection angle. The CME measurements used are from the Space Weather Database Of Notifications, Knowledge, Information (DONKI). The model performance, including its extrapolations to lower/higher energies, is tested by comparing with the spectra of 20 SEP events not used to derive the model parameters. Despite the simplicity of the model, the observed and predicted event-integrated and peak intensities at Earth and at the STEREO spacecraft for these events show remarkable agreement, both in the spectral shapes and their absolute values.



قيم البحث

اقرأ أيضاً

The scenario of twin coronal mass ejections (CMEs), i.e., a fast and wide primary CME (priCME) preceded by previous CMEs (preCMEs), has been found to be favorable to a more efficient particle acceleration in large solar energetic particle (SEP) event s. Here, we study 19 events during 2007--2014 associated with twin-CME eruptions but without large SEP observations at L1 point. We combine remote-sensing and in situ observations from multiple spacecraft to investigate the role of magnetic connectivity in SEP detection and the CME information in 3-dimensional (3D) space. We study one-on-one correlations of the priCME 3D speed, flare intensity, suprathermal backgrounds, and height of CME-CME interaction with the SEP intensity. Among these, the priCME speed is found to correlate with the SEP peak intensity at the highest level. We use the projection correlation method to analyze the correlations between combinations of these multiple independent factors and the SEP peak intensity. We find that the only combination of two or more parameters that has higher correlation with the SEP peak intensity than the CME speed is the CME speed combined with the propagation direction. This further supports the dominant role of the priCME in controlling the SEP enhancements, and emphasizes the consideration of the latitudinal effect. Overall, the magnetic connectivity in longitude as well as latitude and the relatively lower priCME speed may explain the existence of the twin-CME SEP-poor events. The role of the barrier effect of preCME(s) is discussed for an event on 2013 October 28.
The drag-based model (DBM) for heliospheric propagation of coronal mass ejections (CMEs) is a widely used analytical model which can predict CME arrival time and speed at a given heliospheric location. It is based on the assumption that the propagati on of CMEs in interplanetary space is solely under the influence of magnetohydrodynamical drag, where CME propagation is determined based on CME initial properties as well as the properties of the ambient solar wind. We present an upgraded version, covering ensemble modelling to produce a distribution of possible ICME arrival times and speeds, the drag-based ensemble model (DBEM). Multiple runs using uncertainty ranges for the input values can be performed in almost real-time, within a few minutes. This allows us to define the most likely ICME arrival times and speeds, quantify prediction uncertainties and determine forecast confidence. The performance of the DBEM is evaluated and compared to that of ensemble WSA-ENLIL+Cone model (ENLIL) using the same sample of events. It is found that the mean error is $ME=-9.7$ hours, mean absolute error $MAE=14.3$ hours and root mean square error $RMSE=16.7$ hours, which is somewhat higher than, but comparable to ENLIL errors ($ME=-6.1$ hours, $MAE=12.8$ hours and $RMSE=14.4$ hours). Overall, DBEM and ENLIL show a similar performance. Furthermore, we find that in both models fast CMEs are predicted to arrive earlier than observed, most probably owing to the physical limitations of models, but possibly also related to an overestimation of the CME initial speed for fast CMEs.
In addition to their anomalous abundances, 3He-rich solar energetic particles (SEPs) show puzzling energy spectral shapes varying from rounded forms to power laws where the later are characteristics of shock acceleration. Solar sources of these parti cles have been often associated with jets and narrow CMEs, which are the signatures of magnetic reconnection involving open field. Recent reports on new associations with large-scale EUV waves bring new insights on acceleration and transport of 3He-rich SEPs in the corona. We examined energy spectra for 32 3He-rich SEP events observed by ACE at L1 near solar minimum in 2007-2010 and compared the spectral shapes with solar flare signatures obtained from STEREO EUV images. We found the events with jets or brightenings tend to be associated with rounded spectra and the events with coronal waves with power laws. This suggests that coronal waves may be related to the unknown second stage mechanism commonly used to interpret spectral forms of 3He-rich SEPs.
We perform and analyze results of a global magnetohydrodyanmic (MHD) simulation of the fast coronal mass ejection (CME) that occurred on 2011 March 7. The simulation is made using the newly developed Alfven Wave Solar Model (AWSoM), which describes t he background solar wind starting from the upper chromosphere and extends to 24 R$_{odot}$. Coupling AWSoM to an inner heliosphere (IH) model with the Space Weather Modeling Framework (SWMF) extends the total domain beyond the orbit of Earth. Physical processes included in the model are multi-species thermodynamics, electron heat conduction (both collisional and collisionless formulations), optically thin radiative cooling, and Alfven-wave turbulence that accelerates and heats the solar wind. The Alfven-wave description is physically self-consistent, including non-Wentzel-Kramers-Brillouin (WKB) reflection and physics-based apportioning of turbulent dissipative heating to both electrons and protons. Within this model, we initiate the CME by using the Gibson-Low (GL) analytical flux rope model and follow its evolution for days, in which time it propagates beyond STEREO A. A detailed comparison study is performed using remote as well as textit{in situ} observations. Although the flux rope structure is not compared directly due to lack of relevant ejecta observation at 1 AU in this event, our results show that the new model can reproduce many of the observed features near the Sun (e.g., CME-driven extreme ultraviolet (EUV) waves, deflection of the flux rope from the coronal hole, double-front in the white light images) and in the heliosphere (e.g., shock propagation direction, shock properties at STEREO A).
The Sun is an active star that can launch large eruptions of magnetised plasma into the heliosphere, called coronal mass ejections (CMEs). These ejections can drive shocks that accelerate particles to high energies, often resulting in radio emission at low frequencies (<200 MHz). To date, the relationship between the expansion of CMEs, shocks and particle acceleration is not well understood, partly due to the lack of radio imaging at low frequencies during the onset of shock-producing CMEs. Here, we report multi-instrument radio, white-light and ultraviolet imaging of the second largest flare in Solar Cycle 24 (2008-present) and its associated fast CME (3038+/-288 km/s). We identify the location of a multitude of radio shock signatures, called herringbones, and find evidence for shock accelerated electron beams at multiple locations along the expanding CME. These observations support theories of non-uniform, rippled shock fronts driven by an expanding CME in the solar corona.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا