ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Higgs Production Probes Higgs Flavor

368   0   0.0 ( 0 )
 نشر من قبل Samuel Homiller
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate that multiple-Higgs production at the LHC is the most sensitive probe of first and second-generation quark flavor in the Higgs sector. In models where new scalars couple to light quarks, gigantic di-Higgs and even sizable tri-Higgs production rates can be obtained, which can be used to either discover or severely constrain such theories. As an example, we show that the most stringent bounds on enhanced interactions of the $125,textrm{GeV}$ Higgs to the down quark in extended Higgs sectors are obtained by looking for the extra Higgs bosons that provide for such enhancements using the di-Higgs and $Zh$ topologies. In this context, we set new limits on the 125 GeV Higgs coupling to the down quark as strong as $lambda_{hdbar{d}} lesssim 30 lambda_{hdbar{d}}^{textrm{SM}}$ -- a dramatic improvement over previously available bounds. Regarding second-generation quark flavor, we obtain new limits in the coupling to strange as strong as $lambda_{hsbar{s}} lesssim 10 lambda_{hsbar{s}}^{textrm{SM}}$. In addition, we show that the currently unexplored triple-Higgs production topology could be a potential discovery channel of a wide variety of extended Higgs sectors at the LHC, including not only models where extra Higgses couple to light quarks, but also popular theories where they have preferential couplings to the the top.



قيم البحث

اقرأ أيضاً

Higgs production in association with a photon at hadron colliders is a rare process, not yet observed at the LHC. We show that this process is sensitive to significant deviations of Higgs couplings to first and second generation SM quarks (particular ly the up-type) from their SM values, and use a multivariate neural network analysis to derive the prospects of the High Luminosity LHC to probe deviations in the up and charm Higgs Yukawa couplings through $h + gamma$ production.
A coupling of a scalar, charged under an unbroken global U(1) symmetry, to the Standard Model via the Higgs portal is one of the simplest gateways to a dark sector. Yet, for masses $m_{S}geq m_{H}/2$ there are few probes of such an interaction. In th is note we evaluate the sensitivity to the Higgs portal coupling of di-Higgs boson production at the LHC as well as at a future high energy hadron collider, FCC-hh, taking into account the full momentum dependence of the process. This significantly impacts the sensitivity compared to estimates of changes in the Higgs-coupling based on the effective potential. We also compare our findings to precision single Higgs boson probes such as the cross section for vector boson associated Higgs production at a future lepton collider, e.g. FCC-ee, as well as searches for missing energy based signatures.
Inclusive Higgs boson production at large transverse momentum is induced by different production channels. We focus on the leading production through gluon fusion, and perform a consistent combination of the state of the art calculations obtained in the infinite-top-mass effective theory at next-to-next-to-leading order (NNLO) and in the full Standard Model (SM) at next-to-leading order (NLO). We thus present approximate QCD predictions for this process at NNLO, and a study of the corresponding perturbative uncertainties. This calculation is then compared with those obtained with commonly used event generators, and we observe that the description of the considered kinematic regime provided by these tools is in good agreement with state of the art calculations. Finally, we present accurate predictions for other production channels such as vector boson fusion, and associated production with a gauge boson, and with a $tbar{t}$ pair. We find that, at large transverse momentum, the contribution of other production modes is substantial, and therefore must be included for a precise theory prediction of this observable.
292 - Julien Baglio 2016
Higgs pair production is one of the primary goals of the LHC program. Investigating the effects beyond the Standard Model (BSM) is then of high interest. Two cases are presented to exemplify the impact of BSM physics on Higgs pair production and on t he triple Higgs coupling: first a review on charged Higgs pair production mostly in the context of Two-Higgs-Doublet of type II and in particular the Minimal Supersymmetric SM, second a study of the one-loop effects of a heavy neutrino on the triple Higgs coupling.
We demonstrate that the multi-top productions efficiently probe the CP-property of top-Higgs interaction and the Higgs-boson width at the LHC. The four top-quark production alone can exclude a purely CP-odd top-quark Yukawa coupling at the 13~TeV LHC with an integrated luminosity of $430~{rm fb}^{-1}$, regardless the size of the Yukawa coupling. Combining the single Higgs-boson production, the $tbar{t}H$ associated production and the four top-quark production, we show that the CP-phase of the top-quark Yukawa coupling and the Higgs-boson width can be stringently bounded at the LHC with integrated luminosities of $300~{rm fb}^{-1}$ and $3000~{rm fb}^{-1}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا