ﻻ يوجد ملخص باللغة العربية
We show that a class of $mathcal{PT}$ symmetric non-Hermitian Hamiltonians realizing the Yang-Lee edge singularity exhibits an entanglement transition in the long-time steady state evolved under the Hamiltonian. Such a transition is induced by a level crossing triggered by the critical point associated with the Yang-Lee singularity and hence is first-order in nature. At the transition, the entanglement entropy of the steady state jumps discontinuously from a volume-law to an area-law scaling. We exemplify this mechanism using a one-dimensional transverse field Ising model with additional imaginary fields, as well as the spin-1 Blume-Capel model and the three-state Potts model. We further make a connection to the forced-measurement induced entanglement transition in a Floquet non-unitary circuit subject to continuous measurements followed by post-selections. Our results demonstrate a new mechanism for entanglement transitions in non-Hermitian systems harboring a critical point.
We determine a previously unknown universal quantity, the location of the Yang-Lee edge singularity for the O($N$) theories in a wide range of $N$ and various dimensions. At large $N$, we reproduce the $Ntoinfty$ analytical result on the location of
The distribution of Yang-Lee zeros in the ferromagnetic Ising model in both two and three dimensions is studied on the complex field plane directly in the thermodynamic limit via the tensor network methods. The partition function is represented as a
Lee-Yang zeros are points on the complex plane of magnetic field where the partition function of a spin system is zero and therefore the free energy diverges. Lee-Yang zeros and their generalizations are ubiquitous in many-body systems and they fully
Statistical physics provides the concepts and methods to explain the phase behavior of interacting many-body systems. Investigations of Lee-Yang zeros --- complex singularities of the free energy in systems of finite size --- have led to a unified un
Li and Haldane conjectured and numerically substantiated that the entanglement spectrum of the reduced density matrix of ground-states of time-reversal breaking topological phases (fractional quantum Hall states) contains information about the counti