ﻻ يوجد ملخص باللغة العربية
We present DEGARI (Dynamic Emotion Generator And ReclassIfier), an explainable system for emotion attribution and recommendation. This system relies on a recently introduced commonsense reasoning framework, the TCL logic, which is based on a human-like procedure for the automatic generation of novel concepts in a Description Logics knowledge base. Starting from an ontological formalization of emotions based on the Plutchik model, known as ArsEmotica, the system exploits the logic TCL to automatically generate novel commonsense semantic representations of compound emotions (e.g. Love as derived from the combination of Joy and Trust according to Plutchik). The generated emotions correspond to prototypes, i.e. commonsense representations of given concepts, and have been used to reclassify emotion-related contents in a variety of artistic domains, ranging from art datasets to the editorial contents available in RaiPlay, the online platform of RAI Radiotelevisione Italiana (the Italian public broadcasting company). We show how the reported results (evaluated in the light of the obtained reclassifications, the user ratings assigned to such reclassifications, and their explainability) are encouraging, and pave the way to many further research directions.
In this report a computational study of ConceptNet 4 is performed using tools from the field of network analysis. Part I describes the process of extracting the data from the SQL database that is available online, as well as how the closure of the in
Reasoning is a critical ability towards complete visual understanding. To develop machine with cognition-level visual understanding and reasoning abilities, the visual commonsense reasoning (VCR) task has been introduced. In VCR, given a challenging
In order to reach human performance on complexvisual tasks, artificial systems need to incorporate a sig-nificant amount of understanding of the world in termsof macroscopic objects, movements, forces, etc. Inspiredby work on intuitive physics in inf
Comprehending procedural text, e.g., a paragraph describing photosynthesis, requires modeling actions and the state changes they produce, so that questions about entities at different timepoints can be answered. Although several recent systems have s
Recently, pretrained language models (e.g., BERT) have achieved great success on many downstream natural language understanding tasks and exhibit a certain level of commonsense reasoning ability. However, their performance on commonsense tasks is sti