ﻻ يوجد ملخص باللغة العربية
We prove a Gannon-Lee theorem for non-globally hyperbolic Lo-rentzian metrics of regularity $C^1$, the most general regularity class currently available in the context of the classical singularity theorems. Along the way we also prove that any maximizing causal curve in a $C^1$-spacetime is a geodesic and hence of $C^2$-regularity.
We show that the Hawking--Penrose singularity theorem, and the generalisation of this theorem due to Galloway and Senovilla, continue to hold for Lorentzian metrics that are of $C^{1, 1}$-regularity. We formulate appropriate wea
Within the framework of Lagrangian mechanics, the conservativeness of the hydrostatic forces acting on a floating rigid body is proved. The representation of the associated hydrostatic potential is explicitly worked out. The invariance of the resulti
We consider restrictions placed by geodesic completeness on spacetimes possessing a null parallel vector field, the so-called Brinkmann spacetimes. This class of spacetimes includes important idealized gravitational wave models in General Relativity,
We give an elementary probabilistic proof of Veraverbekes Theorem for the asymptotic distribution of the maximum of a random walk with negative drift and heavy-tailed increments. The proof gives insight into the principle that the maximum is in general attained through a single large jump.
We prove that exists a Lindstedt series that holds when a Hamiltonian is driven by a perturbation going to infinity. This series appears to be dual to a standard Lindstedt series as it can be obtained by interchanging the role of the perturbation and