ﻻ يوجد ملخص باللغة العربية
Many different types of fractional calculus have been proposed, which can be organised into some general classes of operators. For a unified mathematical theory, results should be proved in the most general possible setting. Two important classes of fractional-calculus operators are the fractional integrals and derivatives with respect to functions (dating back to the 1970s) and those with general analytic kernels (introduced in 2019). To cover both of these settings in a single study, we can consider fractional integrals and derivatives with analytic kernels with respect to functions, which have never been studied in detail before. Here we establish the basic properties of these general operators, including series formulae, composition relations, function spaces, and Laplace transforms. The tools of convergent series, from fractional calculus with analytic kernels, and of operational calculus, from fractional calculus with respect to functions, are essential ingredients in the analysis of the general class that covers both.
Many possible definitions have been proposed for fractional derivatives and integrals, starting from the classical Riemann-Liouville formula and its generalisations and modifying it by replacing the power function kernel with other kernel functions.
Many different types of fractional calculus have been defined, which may be categorised into broad classes according to their properties and behaviours. Two types that have been much studied in the literature are the Hadamard-type fractional calculus
An important class of fractional differential and integral operators is given by the theory of fractional calculus with respect to functions, sometimes called $Psi$-fractional calculus. The operational calculus approach has proved useful for understa
We consider an integral transform introduced by Prabhakar, involving generalised multi-parameter Mittag-Leffler functions, which can be used to introduce and investigate several different models of fractional calculus. We derive a new series expressi
We consider the Cauchy problem $(mathbb D_{(k)} u)(t)=lambda u(t)$, $u(0)=1$, where $mathbb D_{(k)}$ is the general convolutional derivative introduced in the paper (A. N. Kochubei, Integral Equations Oper. Theory {bf 71} (2011), 583--600), $lambda >