ترغب بنشر مسار تعليمي؟ اضغط هنا

On fractional calculus with analytic kernels with respect to functions

255   0   0.0 ( 0 )
 نشر من قبل Arran Fernandez BA MMath PhD
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Many different types of fractional calculus have been proposed, which can be organised into some general classes of operators. For a unified mathematical theory, results should be proved in the most general possible setting. Two important classes of fractional-calculus operators are the fractional integrals and derivatives with respect to functions (dating back to the 1970s) and those with general analytic kernels (introduced in 2019). To cover both of these settings in a single study, we can consider fractional integrals and derivatives with analytic kernels with respect to functions, which have never been studied in detail before. Here we establish the basic properties of these general operators, including series formulae, composition relations, function spaces, and Laplace transforms. The tools of convergent series, from fractional calculus with analytic kernels, and of operational calculus, from fractional calculus with respect to functions, are essential ingredients in the analysis of the general class that covers both.



قيم البحث

اقرأ أيضاً

Many possible definitions have been proposed for fractional derivatives and integrals, starting from the classical Riemann-Liouville formula and its generalisations and modifying it by replacing the power function kernel with other kernel functions. We demonstrate, under some assumptions, how all of these modifications can be considered as special cases of a single, unifying, model of fractional calculus. We provide a fundamental connection with classical fractional calculus by writing these general fractional operators in terms of the original Riemann-Liouville fractional integral operator. We also consider inversion properties of the new operators, prove analogues of the Leibniz and chain rules in this model of fractional calculus, and solve some fractional differential equations using the new operators.
Many different types of fractional calculus have been defined, which may be categorised into broad classes according to their properties and behaviours. Two types that have been much studied in the literature are the Hadamard-type fractional calculus and tempered fractional calculus. This paper establishes a connection between these two definitions, writing one in terms of the other by making use of the theory of fractional calculus with respect to functions. By extending this connection in a natural way, a generalisation is developed which unifies several existing fractional operators: Riemann--Liouville, Caputo, classical Hadamard, Hadamard-type, tempered, and all of these taken with respect to functions. The fundamental calculus of these generalised operators is established, including semigroup and reciprocal properties as well as application to some example functions. Function spaces are constructed in which the new operators are defined and bounded. Finally, some formulae are derived for fractional integration by parts with these operators.
An important class of fractional differential and integral operators is given by the theory of fractional calculus with respect to functions, sometimes called $Psi$-fractional calculus. The operational calculus approach has proved useful for understa nding and extending this topic of study. Motivated by fractional differential equations, we present an operational calculus approach for Laplace transforms with respect to functions and their relationship with fractional operators with respect to functions. This approach makes the generalised Laplace transforms much easier to analyse and to apply in practice. We prove several important properties of these generalised Laplace transforms, including an inversion formula, and apply it to solve some fractional differential equations, using the operational calculus approach for efficient solving.
We consider an integral transform introduced by Prabhakar, involving generalised multi-parameter Mittag-Leffler functions, which can be used to introduce and investigate several different models of fractional calculus. We derive a new series expressi on for this transform, in terms of classical Riemann-Liouville fractional integrals, and use it to obtain or verify series formulae in various specific cases corresponding to different fractional-calculus models. We demonstrate the power of our result by applying the series formula to derive analogues of the product and chain rules in more general fractional contexts. We also discuss how the Prabhakar model can be used to explore the idea of fractional iteration in connection with semigroup properties.
We consider the Cauchy problem $(mathbb D_{(k)} u)(t)=lambda u(t)$, $u(0)=1$, where $mathbb D_{(k)}$ is the general convolutional derivative introduced in the paper (A. N. Kochubei, Integral Equations Oper. Theory {bf 71} (2011), 583--600), $lambda > 0$. The solution is a generalization of the function $tmapsto E_alpha (lambda t^alpha)$ where $0<alpha <1$, $E_alpha$ is the Mittag-Leffler function. The asymptotics of this solution, as $tto infty$, is studied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا