ﻻ يوجد ملخص باللغة العربية
We investigate inverse proximity effects in a spin-triplet superconductor (TSC) interfaced with a ferromagnet (FM), assuming different types of magnetic profiles and chiral or helical pairings. The region of the coexistence of spin-triplet superconductivity and magnetism is significantly influenced by the orientation and spatial extension of the magnetization with respect to the spin configuration of the Cooper pairs, resulting into clearcut anisotropy signatures. A characteristic mark of the inverse proximity effect arises in the induced spin-polarization at the TSC interface. This is unexpectedly stronger when the magnetic proximity is weaker, thus unveiling immediate detection signatures for spin-triplet pairs. We show that an anomalous magnetic proximity can occur at the interface between the itinerant ferromagnet, SrRuO$_3$, and the unconventional superconductor Sr$_2$RuO$_4$. Such scenario indicates the potential to design characteristic inverse proximity effects in experimentally available SrRuO$_3$-Sr$_2$RuO$_4$ heterostructures and to assess the occurrence of spin-triplet pairs in the highly debated superconducting phase of Sr$_2$RuO$_4$.
We study the physical properties of a ballistic heterostructure made of a ferromagnet (FM) and a spin-triplet superconductor (TSC) with a layered structure stacking along the direction perpendicular to the planes where a chiral px+ipy pairing occurs
Considerable evidence for proximity-induced triplet superconductivity on the ferromagnetic side of a superconductor-ferromagnet (S-F) interface now exists; however, the corresponding effect on the superconductor side has hardly been addressed. We hav
We review the present status of the experimental and theoretical research on the proximity effect in heterostructures composed of superconducting (S) and ferromagnetic (F) thin films. First, we discuss traditional effects originating from the oscilla
Measurements of the polar Kerr effect using a zero-area-loop Sagnac magnetometer on Pb/Ni and Al/(Co-Pd) proximity-effect bilayers show unambiguous evidence for the inverse proximity effect, in which the ferromagnet (F) induces a finite magnetization
The superconducting critical temperature $T_C$ of a superconductor/ferromagnet (S/F) bilayer with spin-flip scatterings at the interface is calculated as a function of the ferromagnet thickness $d_F$ in the dirty limit employing the Usadel equation.