ﻻ يوجد ملخص باللغة العربية
The Trotter-Suzuki decomposition is one of the main approaches for realization of quantum simulations on digital quantum computers. Variance-based global sensitivity analysis (the Sobol method) is a wide used method which allows to decompose output variance of mathematical model into fractions allocated to different sources of uncertainty in inputs or sets of inputs of the model. Here we developed a method for application of the global sensitivity analysis to the optimization of Trotter-Suzuki decomposition. We show with a proof-of-concept example that this approach allows to reduce the number of exponentiations in the decomposition and provides a quantitative method for finding and truncation unimportant terms in the system Hamiltonian.
The Trotter-Suzuki decomposition is an important tool for the simulation and control of physical systems. We provide evidence for the stability of the Trotter-Suzuki decomposition. We model the error in the decomposition and determine sufficiency con
We present a product formula to approximate the exponential of a skew-Hermitian operator that is a sum of generators of a Lie algebra. The number of terms in the product depends on the structure factors. When the generators have large norm with respe
The Trotter-Suzuki approximation leads to an efficient algorithm for solving the time-dependent Schrodinger equation. Using existing highly optimized CPU and GPU kernels, we developed a distributed version of the algorithm that runs efficiently on a
Solid-state spin systems including nitrogen-vacancy (NV) centers in diamond constitute an increasingly favored quantum sensing platform. However, present NV ensemble devices exhibit sensitivities orders of magnitude away from theoretical limits. The
In assignment problems, decision makers are often interested in not only the optimal assignment, but also the sensitivity of the optimal assignment to perturbations in the assignment weights. Typically, only perturbations to individual assignment wei