ﻻ يوجد ملخص باللغة العربية
Let G=(V,E) be a connected graph, where V and E represent, respectively, the node-set and the edge-set. Besides, let Q subseteq V be a set of terminal nodes, and r in Q be the root node of the graph. Given a weight c_{ij} in mathbb{N} associated to each edge (i,j) in E, the Steiner Tree Problem in graphs (STP) consists in finding a minimum-weight subgraph of G that spans all nodes in Q. In this paper, we consider the Min-max Regret Steiner Tree Problem with Interval Costs (MMR-STP), a robust variant of STP. In this variant, the weight of the edges are not known in advance, but are assumed to vary in the interval [l_{ij}, u_{ij}]. We develop an ILP formulation, an exact algorithm, and three heuristics for this problem. Computational experiments, performed on generalizations of the classical STP instances, evaluate the efficiency and the limits of the proposed methods.
We consider a max-min variation of the classical problem of maximizing a linear function over the base of a polymatroid. In our problem we assume that the vector of coefficients of the linear function is not a known parameter of the problem but is so
We study the ridge method for min-max problems, and investigate its convergence without any convexity, differentiability or qualification assumption. The central issue is to determine whether the parametric optimality formula provides a conservative
A recent breakthrough by Ambainis, Balodis, Iraids, Kokainis, Pr=usis and Vihrovs (SODA19) showed how to construct faster quantum algorithms for the Traveling Salesman Problem and a few other NP-hard problems by combining in a novel way quantum searc
Recent applications in machine learning have renewed the interest of the community in min-max optimization problems. While gradient-based optimization methods are widely used to solve such problems, there are however many scenarios where these techni
Given two sets of points in the plane, $P$ of $n$ terminals and $S$ of $m$ Steiner points, a Steiner tree of $P$ is a tree spanning all points of $P$ and some (or none or all) points of $S$. A Steiner tree with length of longest edge minimized is cal