ترغب بنشر مسار تعليمي؟ اضغط هنا

LightXML: Transformer with Dynamic Negative Sampling for High-Performance Extreme Multi-label Text Classification

115   0   0.0 ( 0 )
 نشر من قبل Ting Jiang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Extreme Multi-label text Classification (XMC) is a task of finding the most relevant labels from a large label set. Nowadays deep learning-based methods have shown significant success in XMC. However, the existing methods (e.g., AttentionXML and X-Transformer etc) still suffer from 1) combining several models to train and predict for one dataset, and 2) sampling negative labels statically during the process of training label ranking model, which reduces both the efficiency and accuracy of the model. To address the above problems, we proposed LightXML, which adopts end-to-end training and dynamic negative labels sampling. In LightXML, we use generative cooperative networks to recall and rank labels, in which label recalling part generates negative and positive labels, and label ranking part distinguishes positive labels from these labels. Through these networks, negative labels are sampled dynamically during label ranking part training by feeding with the same text representation. Extensive experiments show that LightXML outperforms state-of-the-art methods in five extreme multi-label datasets with much smaller model size and lower computational complexity. In particular, on the Amazon dataset with 670K labels, LightXML can reduce the model size up to 72% compared to AttentionXML.



قيم البحث

اقرأ أيضاً

One of the key problems in multi-label text classification is how to take advantage of the correlation among labels. However, it is very challenging to directly model the correlations among labels in a complex and unknown label space. In this paper, we propose a Label Mask multi-label text classification model (LM-MTC), which is inspired by the idea of cloze questions of language model. LM-MTC is able to capture implicit relationships among labels through the powerful ability of pre-train language models. On the basis, we assign a different token to each potential label, and randomly mask the token with a certain probability to build a label based Masked Language Model (MLM). We train the MTC and MLM together, further improving the generalization ability of the model. A large number of experiments on multiple datasets demonstrate the effectiveness of our method.
Multi-task learning in text classification leverages implicit correlations among related tasks to extract common features and yield performance gains. However, most previous works treat labels of each task as independent and meaningless one-hot vecto rs, which cause a loss of potential information and makes it difficult for these models to jointly learn three or more tasks. In this paper, we propose Multi-Task Label Embedding to convert labels in text classification into semantic vectors, thereby turning the original tasks into vector matching tasks. We implement unsupervised, supervised and semi-supervised models of Multi-Task Label Embedding, all utilizing semantic correlations among tasks and making it particularly convenient to scale and transfer as more tasks are involved. Extensive experiments on five benchmark datasets for text classification show that our models can effectively improve performances of related tasks with semantic representations of labels and additional information from each other.
109 - Han Liu , Caixia Yuan , 2020
A major challenge of multi-label text classification (MLTC) is to stimulatingly exploit possible label differences and label correlations. In this paper, we tackle this challenge by developing Label-Wise Pre-Training (LW-PT) method to get a document representation with label-aware information. The basic idea is that, a multi-label document can be represented as a combination of multiple label-wise representations, and that, correlated labels always cooccur in the same or similar documents. LW-PT implements this idea by constructing label-wise document classification tasks and trains label-wise document encoders. Finally, the pre-trained label-wise encoder is fine-tuned with the downstream MLTC task. Extensive experimental results validate that the proposed method has significant advantages over the previous state-of-the-art models and is able to discover reasonable label relationship. The code is released to facilitate other researchers.
In this paper, we focus on data augmentation for the extreme multi-label classification (XMC) problem. One of the most challenging issues of XMC is the long tail label distribution where even strong models suffer from insufficient supervision. To mit igate such label bias, we propose a simple and effective augmentation framework and a new state-of-the-art classifier. Our augmentation framework takes advantage of the pre-trained GPT-2 model to generate label-invariant perturbations of the input texts to augment the existing training data. As a result, it present substantial improvements over baseline models. Our contributions are two-factored: (1) we introduce a new state-of-the-art classifier that uses label attention with RoBERTa and combine it with our augmentation framework for further improvement; (2) we present a broad study on how effective are different augmentation methods in the XMC task.
97 - Irene Li , Tianxiao Li , Yixin Li 2021
Multi-label text classification (MLTC) is an attractive and challenging task in natural language processing (NLP). Compared with single-label text classification, MLTC has a wider range of applications in practice. In this paper, we propose a heterog eneous graph convolutional network model to solve the MLTC problem by modeling tokens and labels as nodes in a heterogeneous graph. In this way, we are able to take into account multiple relationships including token-level relationships. Besides, the model allows a good explainability as the token-label edges are exposed. We evaluate our method on three real-world datasets and the experimental results show that it achieves significant improvements and outperforms state-of-the-art comparison methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا