ترغب بنشر مسار تعليمي؟ اضغط هنا

Pre-eruption Splitting of the Double-Decker Structure in a Solar Filament

79   0   0.0 ( 0 )
 نشر من قبل Rui Liu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Solar filaments often erupt partially. Although how they split remains elusive, the splitting process has the potential of revealing the filament structure and eruption mechanism. Here we investigate the pre-eruption splitting of an apparently single filament and its subsequent partial eruption on 2012 September 27. The evolution is characterized by three stages with distinct dynamics. During the quasi-static stage, the splitting proceeds gradually for about 1.5 hrs, with the upper branch rising at a few kilometers per second and displaying swirling motions about its axis. During the precursor stage that lasts for about 10 min, the upper branch rises at tens of kilometers per second, with a pair of conjugated dimming regions starting to develop at its footpoints; with the swirling motions turning chaotic, the axis of the upper branch whips southward, which drives an arc-shaped EUV front propagating in the similar direction. During the eruption stage, the upper branch erupts with the onset of a C3.7-class two-ribbon flare, while the lower branch remains stable. Judging from the well separated footpoints of the upper branch from those of the lower one, we suggest that the pre-eruption filament processes a double-decker structure composed of two distinct flux bundles, whose formation is associated with gradual magnetic flux cancellations and converging photospheric flows around the polarity inversion line.



قيم البحث

اقرأ أيضاً

Force-free equilibria containing two vertically arranged magnetic flux ropes of like chirality and current direction are considered as a model for split filaments/prominences and filament-sigmoid systems. Such equilibria are constructed analytically through an extension of the methods developed in Titov & Demoulin (1999) and numerically through an evolutionary sequence including shear flows, flux emergence, and flux cancellation in the photospheric boundary. It is demonstrated that the analytical equilibria are stable if an external toroidal (shear) field component exceeding a threshold value is included. If this component decreases sufficiently, then both flux ropes turn unstable for conditions typical of solar active regions, with the lower rope typically being unstable first. Either both flux ropes erupt upward, or only the upper rope erupts while the lower rope reconnects with the ambient flux low in the corona and is destroyed. However, for shear field strengths staying somewhat above the threshold value, the configuration also admits evolutions which lead to partial eruptions with only the upper flux rope becoming unstable and the lower one remaining in place. This can be triggered by a transfer of flux and current from the lower to the upper rope, as suggested by the observations of a split filament in Paper~I (Liu et al. 2012). It can also result from tether-cutting reconnection with the ambient flux at the X-type structure between the flux ropes, which similarly influences their stability properties in opposite ways. This is demonstrated for the numerically constructed equilibrium.
Filament eruptions often lead to coronal mass ejections (CMEs), which can affect critical technological systems in space and on the ground when they interact with the geo-magnetosphere in high speeds. Therefore, it is an important issue to investigat e the acceleration mechanisms of CMEs in solar/space physics. Based on observations and simulations, the resistive magnetic reconnection and the ideal instability of magnetic flux rope have been proposed to accelerate CMEs. However, it remains elusive whether both of them play a comparable role during a particular eruption. It has been extremely difficult to separate their contributions as they often work in a close time sequence during one fast acceleration phase. Here we report an intriguing filament eruption event, which shows two apparently separated fast acceleration phases and provides us an excellent opportunity to address the issue. Through analyzing the correlations between velocity (acceleration) and soft (hard) X-ray profiles, we suggest that the instability and magnetic reconnection make a major contribution during the first and second fast acceleration phases, respectively. Further, we find that both processes have a comparable contribution to accelerate the filament in this event.
215 - X. Cheng , M. D. Ding , J. Zhang 2014
In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmos pheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1--0.6 km s$^{-1}$. The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About two hours before the eruption, indications for a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region.
A filament, a dense cool plasma supported by the magnetic fields in the solar corona, often becomes unstable and erupts. It is empirically known that the filament often demonstrates some activations such as a turbulent motion prior to eruption. In ou r previous study (Seki et al. 2017), we analysed the Doppler velocity of an H{alpha} filament and found that the standard deviation of the line-of-sight-velocity (LOSV) distribution in a filament, which indicates the increasing amplitude of the small-scale motions, increased prior to the onset of the eruption. Here, we present a further analysis on this filament eruption, which initiated approximately at 03:40UT on 2016 November 5 in the vicinity of NOAA AR 12605. It includes a coronal line observation and the extrapolation of the surrounding magnetic fields. We found that both the spatially averaged micro-turbulence inside the filament and the nearby coronal line emission increased 6 and 10 hours prior to eruption, respectively. In this event, we did not find any significant changes in the global potential-field configuration preceding the eruption for the past 2 days, which indicates that there is a case in which it is difficult to predict the eruption only by tracking the extrapolated global magnetic fields. In terms of space weather prediction, our result on the turbulent motions in a filament could be used as the useful precursor of a filament eruption.
We study a sequence of eruptive events including filament eruption, a GOES C4.3 flare and a coronal mass ejection. We aim to identify the possible trigger(s) and precursor(s) of the filament destabilisation; investigate flare kernel characteristics; flare ribbons/kernels formation and evolution; study the interrelation of the filament-eruption/flare/coronal-mass-ejection phenomena as part of the integral active-region magnetic field configuration; determine Halpha line profile evolution during the eruptive phenomena. Multi-instrument observations are analysed including Halpha line profiles, speckle images at Halpha-0.8 AA and Halpha+0.8 AA from IBIS at DST/NSO, EUV images and magnetograms from the SDO, coronagraph images from STEREO and the X-ray flux observations from FERMI and GOES. We establish that the filament destabilisation and eruption are the main trigger for the flaring activity. A surge-like event with a circular ribbon in one of the filament footpoints is determined as the possible trigger of the filament destabilisation. Plasma draining in this footpoint is identified as the precursor for the filament eruption. A magnetic flux emergence prior to the filament destabilisation followed by a high rate of flux cancelation of 1.34$times10^{16}$ Mx s$^{-1}$ is found during the flare activity. The flare X-ray lightcurves reveal three phases that are found to be associated with three different ribbons occurring consecutively. A kernel from each ribbon is selected and analysed. The kernel lightcurves and H alpha line profiles reveal that the emission increase in the line centre is stronger than that in the line wings. A delay of around 5-6 mins is found between the increase in the line centre and the occurrence of red asymmetry. Only red asymmetry is observed in the ribbons during the impulsive phases. Blue asymmetry is only associated with the dynamic filament.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا