ﻻ يوجد ملخص باللغة العربية
This paper presents a cloud-connected indoor air quality sensor system that can be deployed to patients homes to study personal microenvironmental exposure for asthma research and management. The system consists of multiple compact sensor units that can measure residential NO2, ozone, humidity, and temperature at one minute resolution and a cloud based informatic system that acquires, stores, and visualizes the microenvironmental data in real time. The sensor hardware can measure NO2 as low as 10 ppb and ozone at 15 ppb. The cloud informatic system is implemented using open-source software on Amazon Web Service for easy deployment and scalability. This system was successfully deployed to pediatric asthma patients homes in a pilot study. In this study, we discovered that some families can have short term NO2 exposure higher than EPAs one hour exposure limit (100 ppb), and NO2 micropollution episodes often arise from natural gas appliance usage such as gas stove burning during cooking. By combining the personalized air pollutant exposure measurements with the physiological responses from a patient diary and medical record, this system can enable novel asthma research and personalized asthma management.
We describe the current state and future plans for a set of tools for scientific data management (SDM) designed to support scientific transparency and reproducible research. SDM has been in active use at our MRI Center for more than two years. We des
We consider a detection problem where sensors experience noisy measurements and intermittent communication opportunities to a centralized fusion center (or cloud). The objective of the problem is to arrive at the correct estimate of event detection i
Nosocomial infections place a substantial burden on health care systems and represent a major issue in current public health, requiring notable efforts for its prevention. Understanding the dynamics of infection transmission in a hospital setting is
Plant breeding is fundamentally comprised of three cyclic activities: 1) intermating lines to generate novel allelic combinations, 2) evaluation of new plant cultivars in distinct environments, and 3) selection of superior individuals to be used as p
Background Little is known about the population pharmacokinetics (PPK) of tacrolimus (TAC) in pediatric primary nephrotic syndrome (PNS). This study aimed to compare the predictive performance between nonlinear and linear PK models and investigate th