ترغب بنشر مسار تعليمي؟ اضغط هنا

Mossbauer Spectroscopic and XRD Studies of two eta-Fe2Al5 Intermetallics

73   0   0.0 ( 0 )
 نشر من قبل Stanislaw Dubiel
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two intermetallic FeAl compounds with Al content of 70.68 and 72.17 at.pct were studied using Mossbauer spectroscopy (5 to 296 K) and X-ray diffraction (15 to 300 K). The compounds were found to crystallize in the orthorhombic Cmcm space group (eta-phase). The collected data revealed that dynamics of the Fe atoms (harmonic in entire temperature range) is significantly different that Al atoms. For the latter strong anharmonicity was evidenced. Moreover, it was found that partial filling of the different Al sites leads to occurrence of low and high symmetry coordination of Fe atoms, which was reflected in occurrence of two distinct doublets in Mossbauer spectra. All spectral parameters of the doublets as well as the Debye temperature, force constant, kinetic and potential energies of vibrations were determined. Those results revealed significant differences between both alloys, likely originating from approaching the stability boundary of the eta-phase for Fe-Al 72.17 at.pct alloy.



قيم البحث

اقرأ أيضاً

Amorphous Fe-gluconate was studied by means of the X-ray diffraction and Mossbauer spectroscopy. Spectra measured in the temperature range between 78 and 295 K were analysed in terms of three doublets using a thin absorber approximation method. Two o f the doublets were associated with the major Fe(II) phase (72%) and one with the minor Fe(III) phase (28%). Based on the obtained results the following quantities characteristic of lattice dynamical properties were determined: Debye temperature from the temperature dependence of the center shift and that of the spectral area (recoil-free factor), force constant, change of the kinetic and potential energies of vibrations. The lattice vibrations of Fe ions present in both ferrous and ferric phases are not perfectly harmonic, yet on average they are. Similarities and differences to the crystalline Fe-gluconate are also reported.
Crystal-field (CF) effects on the rare-earth (RE) ions in ferrimagnetic intermetallics NdCo$_5$ and TbCo$_5$ are evaluated using an ab initio density functional + dynamical mean-field theory approach in conjunction with a quasi-atomic approximation f or on-site electronic correlations on the localized 4$f$ shell. The study reveals an important role of the high-order sectoral harmonic component of the CF in the magnetism of RECo$_5$ intermetallics. An unexpectedly large value is computed in the both systems for the corresponding crystal-field parameter (CFP) $A_6^6 langle r^6 rangle$, far beyond what one would expect from only electrostatic contributions. It allows solving the enigma of the non-saturation of zero-temperature Nd magnetic moments in NdCo$_5$ along its easy axis in the Co exchange field. This unsaturated state had been previously found out from magnetization distribution probed by polarised neutron elastic scattering but had so far remained theoretically unexplained. The easy plane magnetic anisotropy of Nd in NdCo$_5$ is strongly enhanced by the large value of $A_6^6langle r^6 rangle$. Counter-intuitively, the polar dependence of anisotropy energy within the easy plane remains rather small. The easy plane magnetic anisotropy of Nd is reinforced up to high temperatures, which is explained through $J$-mixing effects. The calculated ab initio anisotropy constants of NdCo$_5$ and their temperature dependence are in quantitative agreement with experiment. Unlike NdCo$_5$, the $A_6^6 langle r^6 rangle$ CFP has negligible effects on the Tb magnetism in TbCo$_5$ suggesting that its impact on the RE magnetism is ion-specific across the RECo$_5$ series. The origin of its large value is the hybridization of RE and Co states in a hexagonally coordinated local environment of the RE ion in RECo$_5$ intermetallics.
The BaFe2(As1-xPx)2 compounds with x = 0 (parent), x = 0.10 (under-doped), x = 0.31, 0.33, 0.53 (superconductors with Tc = 27.3 K, 27.6 K, 13.9 K, respectively) and x = 0.70, 0.77 (over-doped) have been investigated versus temperature using 57Fe Moss bauer spectroscopy. Special attention was paid to regions of the spin-density-wave (SDW) antiferromagnetic order, spin-nematic phase, and superconducting transition. The BaFe2(As0.90P0.10)2 compound exhibits a reduced amplitude of SDW as compared to the parent compound and preserved universality class of two-dimensional magnetic planes with one-dimensional spins. The spin-nematic phase region for x = 0.10 is characterized by an incoherent magnetic order. BaFe2(As0.69P0.31)2 shows coexistence of a weak magnetic order and superconductivity due to the vicinity of the quantum critical point. The charge density modulations in the BaFe2(As0.67P0.33)2 and BaFe2(As0.47P0.53)2 superconductors are perturbed near Tc. Pronounced hump of the average quadrupole splitting across superconducting transition is observed for the system with x = 0.33. The phosphorus substitution increases the Debye temperature of the BaFe2(As1-xPx)2 compound. Moreover, experimental electron charge densities at Fe nuclei in this material conclusively show that it should be recognized as a hole-doped system. The measured Mossbauer spectral shift and spectral area are not affected by transition to the superconducting state. This indicates that neither the average electron density at Fe nuclei nor the dynamical properties of the Fe-sublattice in BaFe2(As1-xPx)2 are sensitive to the superconducting transition. Theoretical calculations of hyperfine parameters determining the patterns of Mossbauer spectra of BaFe2(As1-xPx)2 with x = 0, 0.31, 0.5, and 1.0 are performed within the framework of the density functional theory.
199 - A. I. Rykov , M. Seto , Y. Ueda 2009
While synthesizing the single crystals of novel materials is not always feasible, orienting the layered polycrystals becomes an attractive method in the studies of angular dependencies of inelastic scattering of x-rays or neutrons. Putting in use the Rietveld analysis of layered structures in novel manganites and cuprates we develop the studies of their anisotropic properties with oriented powders instead of single crystals. Densities of phonon states (DOS) and atomic thermal displacememts (ATD) are anisotropic in the A-site ordered manganites LnBaMn2Oy of both y=5 and y=6 series (Ln=Y, La, Sm, Gd). We establish the angular dependence of DOS on textures of arbitrary strengths, link the textures observed by x-ray and gamma-ray techniques, and solve the problem of disentanglement of Goldanskii-Karyagin effect (GKE) and texture in Moessbauer spectra.
57Fe Mossbauer spectroscopy measurements were performed on a powdered CuFe2Ge2 sample that orders antiferromagnetically at ~ 175 K. Whereas a paramagnetic doublet was observed above the Neel temperature, a superposition of paramagnetic doublet and ma gnetic sextet (in approximately 0.5 : 0.5 ratio) was observed in the magnetically ordered state, suggesting a magnetic structure similar to a double-Q spin density wave with half of the Fe paramagnetic and another half bearing static moment of ~ 0.5 - 1 mu_B. These results call for a re-evaluation of the recent neutron scattering data and band structure calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا