ﻻ يوجد ملخص باللغة العربية
Recent spectroscopic observations by sensitive radio telescopes require accurate molecular spectral line frequencies to identify molecular species in a forest of lines detected. To measure rest frequencies of molecular spectral lines in the laboratory, an emission-type millimeter and submillimeter-wave spectrometer utilizing state-of-the-art radio-astronomical technologies is developed. The spectrometer is equipped with a 200 cm glass cylinder cell, a two sideband (2SB) Superconductor-Insulator-Superconductor (SIS) receiver in the 230 GHz band, and wide-band auto-correlation digital spectrometers. By using the four 2.5 GHz digital spectrometers, a total instantaneous bandwidth of the 2SB SIS receiver of 8 GHz can be covered with a frequency resolution of 88.5 kHz. Spectroscopic measurements of CH$_3$CN and HDO are carried out in the 230 GHz band so as to examine frequency accuracy, stability, sensitivity, as well as intensity calibration accuracy of our system. As for the result of CH$_3$CN, we confirm that the frequency accuracy for lines detected with sufficient signal to noise ratio is better than 1 kHz, when the high resolution spectrometer having a channel resolution of 17.7 kHz is used. In addition, we demonstrate the capability of this system by spectral scan measurement of CH$_3$OH from 216 GHz to 264 GHz. We assign 242 transitions of CH$_3$OH, 51 transitions of $^{13}$CH$_3$OH, and 21 unidentified emission lines for 295 detected lines. Consequently, our spectrometer demonstrates sufficient sensitivity, spectral resolution, and frequency accuracy for in-situ experimental-based rest frequency measurements of spectral lines on various molecular species.
We present a conceptual framework of planar SIS mixer array receivers and the studies on the required techniques. This concept features membrane-based on-chip waveguide probes and a quasi-two-dimensional local-oscillator distribution waveguide networ
Baryons are complex systems of confined quarks and gluons and exhibit the characteristic spectra of excited states. The systematics of the baryon excitation spectrum is important to our understanding of the effective degrees of freedom underlying nuc
The Atacama Large Millimeter/submillimeter Array(ALMA) Band 1 receiver covers the 35-50 GHz frequency band. Development of prototype receivers, including the key components and subsystems has been completed and two sets of prototype receivers were fu
In this study, we designed and experimentally evaluated a series-connected array of superconductor-insulator-superconductor (SIS) junctions in the 100-GHz band mixer for the multi-beam receiver FOREST on the Nobeyama 45-m millimeter-wave telescope. T
The Prime Focus Spectrograph (PFS) is a new facility instrument for Subaru Telescope which will be installed in around 2017. It is a multi-object spectrograph fed by about 2400 fibers placed at the prime focus covering a hexagonal field-of-view with