ﻻ يوجد ملخص باللغة العربية
We develop further the theory of $q$-deformations of real numbers introduced by Morier-Genoud and Ovsienko, and focus in particular on the class of real quadratic irrationals. Our key tool is a $q$-deformation of the modular group $PSL_q(2,mathbb{Z})$. The action of the modular group by Mobius transformations commutes with the $q$-deformations. We prove that the traces of the elements of $PSL_q(2,mathbb{Z})$ are palindromic polynomials with positive coefficients. These traces appear in the explicit expressions of the $q$-deformed quadratic irrationals.
It was discovered some years ago that there exist non-integer real numbers $q>1$ for which only one sequence $(c_i)$ of integers $c_i in [0,q)$ satisfies the equality $sum_{i=1}^infty c_iq^{-i}=1$. The set of such univoque numbers has a rich topologi
Let $E_n$ be the $n$-th Euler number and $(a)_n=a(a+1)cdots (a+n-1)$ the rising factorial. Let $p>3$ be a prime. In 2012, Sun proved the that $$ sum^{(p-1)/2}_{k=0}(-1)^k(4k+1)frac{(frac{1}{2})_k^3}{k!^3} equiv p(-1)^{(p-1)/2}+p^3E_{p-3} pmod{p^4}, $
Ramanujan studied the analytic properties of many $q$-hypergeometric series. Of those, mock theta functions have been particularly intriguing, and by work of Zwegers, we now know how these curious $q$-series fit into the theory of automorphic forms.
We explain the notion of $q$-deformed real numbers introduced in our previous work and overview their main properties. We will also introduce $q$-deformed Conway-Coxeter friezes.
We give an explicit construct of a harmonic weak Maass form $F_{Theta}$ that is a lift of $Theta^3$, where $Theta$ is the classical Jacobi theta function. Just as the Fourier coefficients of $Theta^3$ are related to class numbers of imaginary quadrat