ﻻ يوجد ملخص باللغة العربية
In this paper we study the $mathbb{C}^*$-fixed points in moduli spaces of Higgs bundles over a compact Riemann surface for a complex semisimple Lie group and its real forms. These fixed points are called Hodge bundles and correspond to complex variations of Hodge structure. We introduce a topological invariant for Hodge bundles that generalizes the Toledo invariant appearing for Hermitian Lie groups. A main result of this paper is a bound on this invariant which generalizes both the Milnor-Wood inequality of the Hermitian case and the Arakelov inequalities of classical variations of Hodge structure. When the generalized Toledo invariant is maximal, we establish rigidity results for the associated variations of Hodge structure which generalize known rigidity results for maximal Higgs bundles and their associated maximal representations in the Hermitian case.
Let Y be a non-singular projective manifold with an ample canonical sheaf, and let V be a rational variation of Hodge structures of weight one on Y with Higgs bundle E(1,0) + E(0,1), coming from a family of Abelian varieties. If Y is a curve the Arak
We collect evidence in support of a conjecture of Griffiths, Green and Kerr on the arithmetic of extension classes of limiting mixed Hodge structures arising from semistable degenerations over a number field. After briefly summarizing how a result of
We investigate the Lyapunov Exponents of a variation of Hodge structure which has $G_2$ as geometric monodromy group, and discuss formulas for the sum of positive Lyapunov Exponents of variations of Hodge structures of any weight.
We discuss several numerical conditions for families of projective varieties or variations of Hodge structures.
This work is dedicated to a new completely algebraic approach to Arakelov geometry, which doesnt require the variety under consideration to be generically smooth or projective. In order to construct such an approach we develop a theory of generalized