ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterizing the line emission from molecular clouds. Stratified random sampling of the Perseus cloud

155   0   0.0 ( 0 )
 نشر من قبل Mario Tafalla
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

$Context.$ The traditional approach to characterize the structure of molecular clouds is to map their line emission. $Aims.$ We aim to test and apply a stratified random sampling technique that can characterize the line emission from molecular clouds more efficiently than mapping. $Methods.$ We sampled the molecular emission from the Perseus cloud using the H2 column density as a proxy. We divided the cloud into ten logarithmically spaced column density bins, and we randomly selected ten positions from each bin. The resulting 100 cloud positions were observed with the IRAM 30m telescope, covering the 3mm-wavelength band and parts of the 2 and 1mm bands. $Results.$ We focus our analysis on 11 molecular species detected toward most column density bins. In all cases, the line intensity is tightly correlated with the H2 column density. For the CO isotopologs, the trend is relatively flat, while for high-dipole moment species such as HCN, CS, and HCO+ the trend is approximately linear. We reproduce this behavior with a cloud model in which the gas density increases with column density, and where most species have abundance profiles characterized by an outer photodissociation edge and an inner freeze-out drop. The intensity behavior of the high-dipole moment species arises from a combination of excitation effects and molecular freeze out, with some modulation from optical depth. This quasi-linear dependence with the H2 column density makes the gas at low column densities dominate the cloud-integrated emission. It also makes the emission from most high-dipole moment species proportional to the cloud mass inside the photodissociation edge. $Conclusions.$ Stratified random sampling is an efficient technique for characterizing the emission from whole molecular clouds. It shows that despite the complex appearance of Perseus, its molecular emission follows a relatively simple pattern.



قيم البحث

اقرأ أيضاً

We present observations performed with the Green Bank Telescope at 1.4 and 5 GHz of three strips coincident with the anomalous microwave emission features previously identified in the Perseus molecular cloud at 33 GHz with the Very Small Array. With these observations we determine the level of the low frequency (~1 - 5 GHz) emission. We do not detect any significant extended emission in these regions and we compute conservative 3sigma upper limits on the fraction of free-free emission at 33 GHz of 27%, 12%, and 18% for the three strips, indicating that the level of the emission at 1.4 and 5 GHz cannot account for the emission observed at 33 GHz. Additionally, we find that the low frequency emission is not spatially correlated with the emission observed at 33 GHz. These results indicate that the emission observed in the Perseus molecular cloud at 33 GHz, is indeed in excess over the low frequency emission, hence confirming its anomalous nature.
We present observations of the known anomalous microwave emission region, G159.6-18.5, in the Perseus molecular cloud at 16 GHz performed with the Arcminute Microkelvin Imager Small Array. These are the highest angular resolution observations of G159 .6-18.5 at microwave wavelengths. By combining these microwave data with infrared observations between 5.8 and 160 mu m from the Spitzer Space Telescope, we investigate the existence of a microwave - infrared correlation on angular scales of ~2 arcmin. We find that the overall correlation appears to increase towards shorter infrared wavelengths, which is consistent with the microwave emission being produced by electric dipole radiation from small, spinning dust grains. We also find that the microwave - infrared correlation peaks at 24 mu m (6.7sigma), suggesting that the microwave emission is originating from a population of stochastically heated small interstellar dust grains rather than polycyclic aromatic hydrocarbons.
Optical stellar polarimetry in the Perseus molecular cloud direction is known to show a fully mixed bi-modal distribution of position angles across the cloud (Goodman et al. 1990). We study the Gaia trigonometric distances to each of these stars and reveal that the two components in position angles trace two different dust clouds along the line of sight. One component, which shows a polarization angle of -37.6 deg +/- 35.2 deg and a higher polarization fraction of 2.0 +/- 1.7%, primarily traces the Perseus molecular cloud at a distance of 300 pc. The other component, which shows a polarization angle of +66.8 deg +/- 19.1 deg and a lower polarization fraction of 0.8 +/- 0.6%, traces a foreground cloud at a distance of 150 pc. The foreground cloud is faint, with a maximum visual extinction of < 1 mag. We identify that foreground cloud as the outer edge of the Taurus molecular cloud. Between the Perseus and Taurus molecular clouds, we identify a lower-density ellipsoidal dust cavity with a size of 100 -- 160 pc. This dust cavity locates at l = 170 deg, b = -20 deg, and d = 240 pc, which corresponds to an HI shell generally associated with the Per OB2 association. The two-component polarization signature observed toward the Perseus molecular cloud can therefore be explained by a combination of the plane-of-sky orientations of the magnetic field both at the front and at the back of this dust cavity.
We compare the statistical properties of J=1-0 13CO spectra observed in the Perseus Molecular Cloud with synthetic J=1-0 13CO spectra from a 5 pc model cloud. The synthetic spectra are computed solving the non-LTE radiative transfer problem for a mod el cloud obtained as solutions of the 3-D magneto-hydrodynamic (MHD) equations in both the highly supersonic and super-Alfvenic regimes of random flows. We present several statistical results that demonstrate remarkable similarity between real data and the synthetic cloud. The three-dimensional structure and dynamics of molecular clouds like Perseus are appropriately described by random supersonic and super-Alfvenic MHD flows. Although the description of gravity and stellar radiation are essential to understand the formation of single protostars and the effects of star formation in the cloud dynamics, the overall description of the cloud and of the initial conditions for star formation can apparently be described on intermediate scales without accounting for gravity and stellar radiation.
We present a study of hierarchical structure in the Perseus molecular cloud, from the scale of the entire cloud ($gtrsim$10 pc) to smaller clumps ($sim$1 pc), cores ($sim$0.05-0.1 pc), envelopes ($sim$300-3000 AU) and protostellar objects ($sim$15 AU ). We use new observations from the Submillimeter Array (SMA) large project Mass Assembly of Stellar Systems and their Evolution with the SMA (MASSES) to probe the envelopes, and recent single-dish and interferometric observations from the literature for the remaining scales. This is the first study to analyze hierarchical structure over five scales in the same cloud complex. We compare the number of fragments with the number of Jeans masses in each scale to calculate the Jeans efficiency, or the ratio of observed to expected number of fragments. The velocity dispersion is assumed to arise either from purely thermal motions, or from combined thermal and non-thermal motions inferred from observed spectral line widths. For each scale, thermal Jeans fragmentation predicts more fragments than observed, corresponding to inefficient thermal Jeans fragmentation. For the smallest scale, thermal plus non-thermal Jeans fragmentation also predicts too many protostellar objects. However at each of the larger scales thermal plus non-thermal Jeans fragmentation predicts fewer than one fragment, corresponding to no fragmentation into envelopes, cores, and clumps. Over all scales, the results are inconsistent with complete Jeans fragmentation based on either thermal or thermal plus non-thermal motions. They are more nearly consistent with inefficient thermal Jeans fragmentation, where the thermal Jeans efficiency increases from the largest to the smallest scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا