ﻻ يوجد ملخص باللغة العربية
The HOLMES experiment will perform a precise calorimetric measurement of the end point of the Electron Capture (EC) decay spectrum of 163Ho in order to extract information on neutrino mass with a sensitivity below 2 eV. In its final configuration, HOLMES will deploy 1000 detectors of low-temperature microcalorimeters with implanted 163Ho nuclei. The baseline sensors for HOLMES are Mo/Cu TESs (Transition Edge Sensors) on SiNx membrane with gold absorbers. Considering the large number of pixels and an event rate of about 300 Hz/pixel, a large multiplexing factor and a large bandwidth are needed. To fulfill this requirement, HOLMES will exploit recent advances in microwave multiplexing. In this contribution, we present the status of the activities in development, the performances of the developed microwave-multiplexed readout system, and the results obtained with the detectors specifically designed for HOLMES in terms of noise, time, and energy resolutions
Plasma Display Panels (PDP), the underlying engine of panel plasma television displays, are being investigated for their utility as radiation detectors called Plasma Panel Sensors (PPS). The PPS a novel variant of a micropattern radiation detector, i
The European Research Council has recently funded HOLMES, a project with the aim of performing a calorimetric measurement of the electron neutrino mass measuring the energy released in the electron capture decay of 163Ho. The baseline for HOLMES are
Coating thermal noise is a fundamental limit for precision experiments based on optical and quantum transducers. In this review, after a brief overview of the techniques for coating thermal noise measurements, we present the latest world-wide researc
The radioactive noble gas $^{222}$Rn, which can be dissolved in water, is an important background source for JUNO. In this paper, based on the water system of JUNO prototype, two kinds of high sensitivity radon detectors have been proposed and develo
This is part of a document, which is devoted to the developments of pixel detectors in the context of the International Linear Collider. From the early developments of the MIMOSAs to the proposed DotPix I recall some of the major progresses. The need