ﻻ يوجد ملخص باللغة العربية
Active learning is a unique abstraction of machine learning techniques where the model/algorithm could guide users for annotation of a set of data points that would be beneficial to the model, unlike passive machine learning. The primary advantage being that active learning frameworks select data points that can accelerate the learning process of a model and can reduce the amount of data needed to achieve full accuracy as compared to a model trained on a randomly acquired data set. Multiple frameworks for active learning combined with deep learning have been proposed, and the majority of them are dedicated to classification tasks. Herein, we explore active learning for the task of segmentation of medical imaging data sets. We investigate our proposed framework using two datasets: 1.) MRI scans of the hippocampus, 2.) CT scans of pancreas and tumors. This work presents a query-by-committee approach for active learning where a joint optimizer is used for the committee. At the same time, we propose three new strategies for active learning: 1.) increasing frequency of uncertain data to bias the training data set; 2.) Using mutual information among the input images as a regularizer for acquisition to ensure diversity in the training dataset; 3.) adaptation of Dice log-likelihood for Stein variational gradient descent (SVGD). The results indicate an improvement in terms of data reduction by achieving full accuracy while only using 22.69 % and 48.85 % of the available data for each dataset, respectively.
Although having achieved great success in medical image segmentation, deep learning-based approaches usually require large amounts of well-annotated data, which can be extremely expensive in the field of medical image analysis. Unlabeled data, on the
Learning-based approaches for semantic segmentation have two inherent challenges. First, acquiring pixel-wise labels is expensive and time-consuming. Second, realistic segmentation datasets are highly unbalanced: some categories are much more abundan
The success of deep learning heavily depends on the availability of large labeled training sets. However, it is hard to get large labeled datasets in medical image domain because of the strict privacy concern and costly labeling efforts. Contrastive
Deep neural networks have been a prevailing technique in the field of medical image processing. However, the most popular convolutional neural networks (CNNs) based methods for medical image segmentation are imperfect because they model long-range de
Deep learning-based segmentation methods are vulnerable to unforeseen data distribution shifts during deployment, e.g. change of image appearances or contrasts caused by different scanners, unexpected imaging artifacts etc. In this paper, we present