ﻻ يوجد ملخص باللغة العربية
Brown dwarfs were recently found to display rotational modulations, commonly attributed to cloud cover of varying thickness, possibly modulated by planetary-scale waves. However, the long-term, continuous, high-precision monitoring data to test this hypothesis for more objects is lacking. By applying our novel photometric approach to TESS data, we extract a high-precision lightcurve of the closest brown dwarfs, which form the binary system Luhman 16AB. Our observations, that cover about 100 rotations of Luhman 16B, display continuous lightcurve evolution. The periodogram analysis shows that the rotational period of the component that dominates the lightcurve is 5.28 h. We also find evidence for periods of 2.5 h, 6.94 h, and 90.8 h. We show that the 2.5 h and 5.28 h periods emerge from Luhman 16B and that they consist of multiple, slightly shifted peaks, revealing the presence of high-speed jets and zonal circulation in this object. We find that the lightcurve evolution is well fit by the planetary-scale waves model, further supporting this interpretation. We argue that the 6.94 h peak is likely the rotation period of Luhman 16A. By comparing the rotational periods to observed v sin(i) measurements, we show that the two brown dwarfs are viewed at angles close to their equatorial planes. We also describe a long-period (P~91 h) evolution in the lightcurve, which we propose emerges from the vortex-dominated polar regions. Our study paves the way toward direct comparisons of the predictions of global circulation models to observations via periodogram analysis.
Context. Photometric monitoring of the variability of brown dwarfs can provide useful information about the structure of clouds in their cold atmospheres. The brown-dwarf binary system Luhman 16AB is an interesting target for such a study, as its com
The binary brown dwarf WISE J104915.57$-$531906.1 (also Luhman 16AB), composed of a late L and early T dwarf, is a prototypical L/T transition flux reversal binary located at only 2 pc distance. Luhman 16B is a known variable whose light curves evolv
AU Mic is a young ($sim$24 Myr), pre-Main Sequence M~dwarf star that was observed in the first month of science observations of the Transiting Exoplanet Survey Satellite (TESS) and re-observed two years later. This target has photometric variability
Time-resolved observations of brown dwarfs rotational modulations provide powerful insights into the properties of condensate clouds in ultra-cool atmospheres. Multi-wavelength light curves reveal cloud vertical structures, condensate particle sizes,
Context. Kepler-444 is one of the oldest planetary systems known thus far. Its peculiar configuration consisting of five sub-Earth-sized planets orbiting the companion to a binary stellar system makes its early history puzzling. Moreover, observation