ترغب بنشر مسار تعليمي؟ اضغط هنا

On some freeness-type properties for line arrangements

199   0   0.0 ( 0 )
 نشر من قبل Anca Macinic
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

By way of Ziegler restrictions we study the relation between nearly free plane arrangements and combinatorics and we give a Yoshinaga-type criterion for plus-one generated plane arrangements.



قيم البحث

اقرأ أيضاً

180 - Takuro Abe 2020
We establish a general theory for projective dimensions of the logarithmic derivation modules of hyperplane arrangements. That includes the addition-deletion and restriction theorem, Yoshinaga-type result, and the division theorem for projective dime nsions of hyperplane arrangements. They are generalizations of the free arrangement cases, that can be regarded as the special case of our result when the projective dimension is zero. The keys to prove them are several new methods to determine the surjectivity of the Euler and the Ziegler restriction maps, that is combinatorial when the projective dimension is not maximal for all localizations. Also, we introduce a new class of arrangements in which the projective dimension is comibinatorially determined.
In this paper, we study the class of free hyperplane arrangements. Specifically, we investigate the relations between freeness over a field of finite characteristic and freeness over $mathbb{Q}$.
In this article, we study the $k$-Lefschetz properties for non-Artinian algebras, proving that several known results in the Artinian case can be generalized in this setting. Moreover, we describe how to characterize the graded algebras having the $k$ -Lefschetz properties using sectional matrices. We then apply the obtained results to the study of the Jacobian algebra of hyperplane arrangements, with particular attention to the class of free arrangements.
In this note we look at the freeness for complex affine hypersurfaces. If $X subset mathbb{C}^n$ is such a hypersurface, and $D$ denotes the associated projective hypersurface, obtained by taking the closure of $X$ in $mathbb{P}^n$, then we relate fi rst the Jacobian syzygies of $D$ and those of $X$. Then we introduce two types of freeness for an affine hypersurface $X$, and prove various relations between them and the freeness of the projective hypersurface $D$. We write down a proof of the folklore result saying that an affine hypersurface is free if and only if all of its singularities are free, in the sense of K. Saitos definition in the local setting. In particular, smooth affine hypersurfaces and affine plane curves are always free. Some other results, involving global Tjurina numbers and minimal degrees of non trivial syzygies are also explored.
We show that the number of lines in an $m$--homogeneous supersolvable line arrangement is upper bounded by $3m-3$ and we classify the $m$--homogeneous supersolvable line arrangements with two modular points up-to lattice-isotopy. A lower bound for th e number of double points $n_2$ in an $m$--homogeneous supersolvable line arrangement of $d$ lines is also considered. When $3 leq m leq 5$, or when $m geq frac{d}{2}$, or when there are at least two modular points, we show that $n_2 geq frac{d}{2}$, as conjectured by B. Anzis and S. O. Tohu aneanu. This conjecture is shown to hold also for supersolvable line arrangements obtained as cones over generic line arrangements, or cones over arbitrary line arrangements having a generic vertex.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا