ترغب بنشر مسار تعليمي؟ اضغط هنا

Observing gravitational wave polarizations with LISA-TAIJI network

121   0   0.0 ( 0 )
 نشر من قبل Gang Wang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two polarization modes of gravitational wave are derived from the general relativity which are plus and cross modes. However, the alternative theories of gravity can yield the gravitational wave with up to six polarizations. Searching for the polarizations beyond plus and cross is an important test of general relativity. In principle, one space-borne detector, like LISA, could measure the gravitational wave polarizations from a long time observation with its orbital motion. With the comparable sensitivities, the joint LISA and TAIJI missions will improve the observations on the polarization predictions of theories beyond general relativity. In this work, a class of parameterized post-Einsteinian waveform is employed to describe the alternative polarizations, and six parameterized post-Einsteinian parameters quantifying from general relativity waveform are examined by using the LISA-TAIJI network. Our results show that the measurements on amplitudes of alternative polarizations from joint LISA-TAIJI observation could be improved by more than 10 times compared to LISA single mission in an optimal scenario.



قيم البحث

اقرأ أيضاً

LISA and Taiji are expected to form a space-based gravitational-wave (GW) detection network in the future. In this work, we make a forecast for the cosmological parameter estimation with the standard siren observation from the LISA-Taiji network. We simulate the standard siren data based on a scenario with configuration angle of $40^{circ}$ between LISA and Taiji. Three models for the population of massive black hole binary (MBHB), i.e., pop III, Q3d, and Q3nod, are considered to predict the events of MBHB mergers. We find that, based on the LISA-Taiji network, the number of electromagnetic (EM) counterparts detected is almost doubled compared with the case of single Taiji mission. Therefore, the LISA-Taiji networks standard siren observation could provide much tighter constraints on cosmological parameters. For example, solely using the standard sirens from the LISA-Taiji network, the constraint precision of $H_0$ could reach $1.3%$. Moreover, combined with the CMB data, the GW-EM observation based on the LISA-Taiji network could also tightly constrain the equation of state of dark energy, e.g., the constraint precision of $w$ reaches about $4%$, which is comparable with the result of CMB+BAO+SN. It is concluded that the GW standard sirens from the LISA-Taiji network will become a useful cosmological probe in understanding the nature of dark energy in the future.
121 - Gang Wang , Wen-Biao Han 2021
In previous work [1], three TAIJI orbital deployments have been proposed to compose alternative LISA-TAIJI networks, TAIJIm (leading the Earth by $20^circ$ and $-60^circ$ inclined with respect to ecliptic plane), TAIJIp (leading the Earth by $20^circ $ and $+60^circ$ inclined), TAIJIc (colocated and coplanar with LISA) with respect to LISA mission (trailing the Earth by $20^circ$ and $+60^circ$ inclined). And the LISA-TAIJIm network has been identified as the most capable configuration for massive black hole binary observation. In this work, we examine the performance of three networks to the stochastic gravitational wave background (SGWB) especially for the comparison of two eligible configurations, LISA-TAIJIm and LISA-TAIJIp. This investigation shows that the detectability of LISA-TAIJIm is competitive with the LISA-TAIJIp network for some specific SGWB spectral shapes. And the capability of LISA-TAIJIm is also identical to LISA-TAIJIp to separate the SGWB components by determining the parameters of signals. Considering the performances on SGWB and massive black hole binaries observations, the TAIJIm could be recognized as an optimal option to fulfill joint observations with LISA.
The space-borne gravitational wave (GW) detectors, LISA and TAIJI, are planned to be launched in the 2030s. The dual detectors with comparable sensitivities will form a network observing GW with significant advantages. In this work, we investigate th e three possible LISA-TAIJI networks for the different location and orientation compositions of LISA orbit ($+60^circ$ inclination and trailing the Earth by $20^circ$) and alternative TAIJI orbit configurations including TAIJIp ($+60^circ$ inclination and leading the Earth by $20^circ$), TAIJIc ($+60^circ$ inclination and co-located with LISA), TAIJIm ($-60^circ$ inclination and leading the Earth by $20^circ$). In the three LISA-TAIJI configurations, the LISA-TAIJIm network shows the best performance on the sky localization and polarization determination for the massive binary system due to their better complementary antenna pattern, and LISA-TAIJIc could achieve the best cross-correlation and observe the stochastic GW background with an optimal sensitivity.
In this technical note, we study the possibility of using networks of ground-based detectors to directly measure gravitational-wave polarizations using signals from compact binary coalescences. We present a simple data analysis method to partially ac hieve this, assuming presence of a strong signal well-captured by a GR template.
Assuming that, for a given source of gravitational waves (GWs), we know its sky position, as is the case of GW events with an electromagnetic counterpart such as GW170817, we discuss a null stream method to probe GW polarizations including spin-0 (sc alar) GW modes and spin-1 (vector) modes, especially with an expected network of Advanced LIGO, Advanced Virgo and KAGRA. For two independent null streams for four non-co-aligned GW detectors, we study a location on the sky, exactly at which the spin-0 modes of GWs vanish in any null stream for the GW detector network, though the strain output at a detector may contain the spin-0 modes. Our numerical calculations show that there exist seventy sky positions that satisfy this condition of killing the spin-0 modes in the null streams. If a GW source with an electromagnetic counterpart is found in one of the seventy sky positions, the spin-1 modes will be testable separately from the spin-0 modes by the null stream method. In addition, we study a superposition of the two null streams to show that any one of the three modes (one combined spin-0 and two spin-1 modes) can be eliminated by suitably adjusting a weighted superposition of the null streams and thereby a set of the remaining polarization modes can be experimentally tested.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا