Domination numbers and noncover complexes of hypergraphs


الملخص بالإنكليزية

Let $mathcal{H}$ be a hypergraph on a finite set $V$. A {em cover} of $mathcal{H}$ is a set of vertices that meets all edges of $mathcal{H}$. If $W$ is not a cover of $mathcal{H}$, then $W$ is said to be a {em noncover} of $mathcal{H}$. The {em noncover complex} of $mathcal{H}$ is the abstract simplicial complex whose faces are the noncovers of $mathcal{H}$. In this paper, we study homological properties of noncover complexes of hypergraphs. In particular, we obtain an upper bound on their Leray numbers. The bound is in terms of hypergraph domination numbers. Also, our proof idea is applied to compute the homotopy type of the noncover complexes of certain uniform hypergraphs, called {em tight paths} and {em tight cycles}. This extends to hypergraphs known results on graphs.

تحميل البحث