ﻻ يوجد ملخص باللغة العربية
We propose an unconventional topological quantum phase transition connecting a higher-order topological insulator (HOTI) and a featureless Mott insulator sharing the same symmetry patterns. We construct an effective theory description of the quantum critical point (QCP) by combining a bosonization approach and the coupled-stripe construction of 1D critical spin ladders. The phase transition theory is characterized by a critical dipole liquid theory with subsystem $U(1)$ symmetry whose low energy modes contain a Bose surface along the $k_x,k_y$ axis. Such a quantum critical point manifests fracton dynamics and the breakdown of the area law entanglement entropy due to the existence of a Bose surface. We numerically confirm our findings by measuring the entanglement entropy, topological rank-2 Berry phase, and the static structure factor throughout the topological transition and compare it with our previous approach obtained from the percolation picture. A significant new element of our phase transition theory is that the infrared~(IR) effective theory is controlled by short wave-length fluctuations with peculiar UV-IR mixing.
The theory of quantum phase transitions separating different phases with distinct symmetry patterns at zero temperature is one of the foundations of modern quantum many-body physics. In this paper we demonstrate that the existence of a 2D topological
The surfaces of three dimensional topological insulators (3D TIs) are generally described as Dirac metals, with a single Dirac cone. It was previously believed that a gapped surface implied breaking of either time reversal $mathcal T$ or U(1) charge
We investigate the order of the topological quantum phase transition in a two dimensional quadrupolar topological insulator within a thermodynamic approach. Using numerical methods, we separate the bulk, edge and corner contributions to the grand pot
In a recent letter, J. Cardy, Phys. Rev. Lett. textbf{112}, 220401 (2014), the author made a very interesting observation that complete revivals of quantum states after quantum quench can happen in a period which is a fraction of the system size. Thi
In three dimensions, gapped phases can support fractonic quasiparticle excitations, which are either completely immobile or can only move within a low-dimensional submanifold, a peculiar topological phenomenon going beyond the conventional framework