ﻻ يوجد ملخص باللغة العربية
The MGRO J2019+37 region is one of the brightest sources in the sky at TeV energies. It was detected in the 2 year HAWC catalog as 2HWC J2019+367 and here we present a detailed study of this region using data from HAWC. This analysis resolves the region into two sources: HAWC J2019+368 and HAWC J2016+371. We associate HAWC J2016+371 with the evolved supernova remnant CTB 87, although its low significance in this analysis prevents a detailed study at this time. An investigation of the morphology (including possible energy dependent morphology) and spectrum for HAWC J2019+368 is the focus of this work. We associate HAWC J2019+368 with PSR J2021+3651 and its X-ray pulsar wind nebula, the Dragonfly nebula. Modeling the spectrum measured by HAWC and Suzaku reveals a $sim$7 kyr pulsar and nebula system producing the observed emission at X-ray and ${gamma}$-ray energies.
This article reports the results of X-ray studies of the extended TeV $gamma$-ray source VER J2019+368. Suzaku observations conducted to examine properties of the X-ray pulsar wind nebula (PWN) around PSR J2021+3651 revealed that the western region o
eHWC J2019+368 is one of the sources emitting $gamma$-rays with energies higher than 100 TeV based on the recent measurement with the High Altitude Water Cherenkov Observatory (HAWC), and the origin is still in debate. The pulsar PSR J2021$+$3651 is
Gamma-ray bursts (GRBs) are among the most luminous sources in the universe. The nature of their emission at TeV energies is one of the most relevant open issues related to these events. The temporal and spectral features inferred from the early and
We present a new catalog of TeV gamma-ray sources using 1523 days of data from the High Altitude Water Cherenkov (HAWC) observatory. The catalog represents the most sensitive survey of the Northern gamma-ray sky at energies above several TeV, with th
Cosmic rays with energies up to a few PeV are known to be accelerated within the Milky Way. Traditionally, it has been presumed that supernova remnants were the main source of very-high-energy cosmic rays but theoretically it is difficult to get prot