ﻻ يوجد ملخص باللغة العربية
Understanding causal relationships is one of the most important goals of modern science. So far, the causal inference literature has focused almost exclusively on outcomes coming from a linear space, most commonly the Euclidean space. However, it is increasingly common that complex datasets collected through electronic sources, such as wearable devices and medical imaging, cannot be represented as data points from linear spaces. In this paper, we present a formal definition of causal effects for outcomes from non-linear spaces, with a focus on the Wasserstein space of cumulative distribution functions. We develop doubly robust estimators and associated asymptotic theory for these causal effects. Our framework extends to outcomes from certain Riemannian manifolds. As an illustration, we use our framework to quantify the causal effect of marriage on physical activity patterns using wearable device data collected through the National Health and Nutrition Examination Survey.
Frequentist inference has a well-established supporting theory for doubly robust causal inference based on the potential outcomes framework, which is realized via outcome regression (OR) and propensity score (PS) models. The Bayesian counterpart, how
Distribution function is essential in statistical inference, and connected with samples to form a directed closed loop by the correspondence theorem in measure theory and the Glivenko-Cantelli and Donsker properties. This connection creates a paradig
Skepticism about the assumption of no unmeasured confounding, also known as exchangeability, is often warranted in making causal inferences from observational data; because exchangeability hinges on an investigators ability to accurately measure cova
We propose novel estimators for categorical and continuous treatments by using an optimal covariate balancing strategy for inverse probability weighting. The resulting estimators are shown to be consistent and asymptotically normal for causal contras
Propensity score methods have been shown to be powerful in obtaining efficient estimators of average treatment effect (ATE) from observational data, especially under the existence of confounding factors. When estimating, deciding which type of covari