ﻻ يوجد ملخص باللغة العربية
The magnetic activity of the Sun directly impacts the Earth and human life. Likewise, other stars will have an impact on the habitability of planets orbiting these host stars. The lack of information on the magnetic field in the higher atmospheric layers hampers our progress in understanding solar magnetic activity. Overcoming this limitation would allow us to address four paramount long-standing questions: (1) How does the magnetic field couple the different layers of the atmosphere, and how does it transport energy? (2) How does the magnetic field structure, drive and interact with the plasma in the chromosphere and upper atmosphere? (3) How does the magnetic field destabilise the outer solar atmosphere and thus affect the interplanetary environment? (4) How do magnetic processes accelerate particles to high energies? New ground-breaking observations are needed to address these science questions. We suggest a suite of three instruments that far exceed current capabilities in terms of spatial resolution, light-gathering power, and polarimetric performance: (a) A large-aperture UV-to-IR telescope of the 1-3 m class aimed mainly to measure the magnetic field in the chromosphere by combining high spatial resolution and high sensitivity. (b) An extreme-UV-to-IR coronagraph that is designed to measure the large-scale magnetic field in the corona with an aperture of about 40 cm. (c) An extreme-UV imaging polarimeter based on a 30 cm telescope that combines high throughput in the extreme UV with polarimetry to connect the magnetic measurements of the other two instruments. This mission to measure the magnetic field will unlock the driver of the dynamics in the outer solar atmosphere and thereby greatly advance our understanding of the Sun and the heliosphere.
The structure and dynamics of the outer solar atmosphere are reviewed with emphasis on the role played by the magnetic field. Contemporary observations that focus on high resolution imaging over a range of temperatures, as well as UV, EUV and hard X-
Spectroscopic observations at extreme and far ultraviolet wavelengths have revealed systematic upflows in the solar transition region and corona. These upflows are best seen in the network structures of the quiet Sun and coronal holes, boundaries of
This publication provides an overview of magnetic fields in the solar atmosphere with the focus lying on the corona. The solar magnetic field couples the solar interior with the visible surface of the Sun and with its atmosphere. It is also responsib
In this work, a state-of-the-art vortex detection method, Instantaneous Vorticity Deviation, is applied to locate three-dimensional vortex tube boundaries in numerical simulations of solar photospheric magnetoconvection performed by the MURaM code. W
Three kinds of magnetic couplings in the quiet solar atmosphere are highlighted and discussed, all fundamentally connected to the Lorentz force. First the coupling of the convecting and overshooting fluid in the surface layers of the Sun with the mag