ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlated electronic structure and optical response of rare-earth-based semiconductors

104   0   0.0 ( 0 )
 نشر من قبل Anna Galler
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Simultaneous occurrence of the Mott and band gap in correlated semiconductors results in a complex optical response with the nature of the absorption edge difficult to resolve both experimentally and theoretically. Here, we combine a dynamical mean-field theory approach to localized 4f shells with an improved description of band gaps by a semi-local exchange-correlation potential to calculate the optical properties of the light rare-earth fluorosulfides LnSF (Ln=Pr, Nd, Sm, Gd) from first principles. In agreement with experiment, we find the absorption edge in SmSF to stem from S-3p to Sm-4f transitions, while the Gd compound behaves as an ordinary p-d gap semiconductor. In the unexplored PrSF and NdSF systems we predict a rather unique occurrence of strongly hybridized 4f-5d states at the bottom of the conduction band. The nature of the absorption edge underlies a peculiar anisotropy of the optical conductivity in each system.



قيم البحث

اقرأ أيضاً

We demonstrate that a theoretical framework fully incorporating intra-atomic correlations and multiplet structure of the localized 4f states is required in order to capture the essential physics of rare-earth semiconductors and semimetals. We focus i n particular on the rare-earth semimetal erbium arsenide (ErAs), for which effective one-electron approaches fail to provide a consistent picture of both high and low-energy electronic states. We treat the many-body states of the Er 4f shell within an atomic approximation in the framework of dynamical mean-field theory. Our results for the magnetic-field dependence of the 4f local moment, the influence of multiplets on the photoemission spectrum, and the exchange splitting of the Fermi surface pockets as measured from Shubnikov-de Haas oscillations, are found to be in good agreement with experimental results.
243 - L. Petit , R. Tyer , Z. Szotek 2010
We present results of an ab-initio study of the electronic structure of 140 rare earth compounds. Specifically we predict an electronic phase diagram of the entire range of rare earth monopnictides and monochalcogenides, composed of metallic, semicon ducting and heavy fermion-like regions, and exhibiting valency transitions brought about by a complex interplay between ligand chemistry and lanthanide contraction. The calculations exploit the combined effect of a first-principles methodology, which can adequately describe the dual character of electrons, itinerant vs. localized, and high throughput computing made possible by the increasing available computational power. Our findings, including the predicted intermediate valent compounds SmO and TmSe, are in overall excellent agreement with the available experimental data. The accuracy of the approach, proven e.g. through the lattice parameters calculated to within 1.5% of the experimental values, and its ability to describe localization phenomena in solids, makes it a competitive atomistic simulation approach in the search for and design of new materials with specific physical properties and possible technological applications.
Rare-earth nickelates exhibit a metal-insulator transition accompanied by a structural distortion that breaks the symmetry between formerly equivalent Ni sites. The quantitative theoretical description of this coupled electronic-structural instabilit y is extremely challenging. Here, we address this issue by simultaneously taking into account both structural and electronic degrees of freedom using a charge self-consistent combination of density functional theory and dynamical mean-field theory, together with screened interaction parameters obtained from the constrained random phase approximation. Our total energy calculations show that the coupling to an electronic instability towards a charge disproportionated insulating state is crucial to stabilize the structural distortion, leading to a clear first order character of the coupled transition. The decreasing octahedral rotations across the series suppress this electronic instability and simultaneously increase the screening of the effective Coulomb interaction, thus weakening the correlation effects responsible for the metal-insulator transition. Our approach allows to obtain accurate values for the structural distortion and thus facilitates a comprehensive understanding, both qualitatively and quantitatively, of the complex interplay between structural properties and electronic correlation effects across the nickelate series.
The description of realistic strongly correlated systems has recently advanced through the combination of density functional theory in the local density approximation (LDA) and dynamical mean field theory (DMFT). This LDA+DMFT method is able to treat both strongly correlated insulators and metals. Several interfaces between LDA and DMFT have been used, such as (N-th order) Linear Muffin Tin Orbitals or Maximally localized Wannier Functions. Such schemes are however either complex in use or additional simplifications are often performed (i.e., the atomic sphere approximation). We present an alternative implementation of LDA+DMFT, which keeps the precision of the Wannier implementation, but which is lighter. It relies on the projection of localized orbitals onto a restricted set of Kohn-Sham states to define the correlated subspace. The method is implemented within the Projector Augmented Wave (PAW) and within the Mixed Basis Pseudopotential (MBPP) frameworks. This opens the way to electronic structure calculations within LDA+DMFT for more complex structures with the precision of an all-electron method. We present an application to two correlated systems, namely SrVO3 and beta-NiS (a charge-transfer material), including ligand states in the basis-set. The results are compared to calculations done with Maximally Localized Wannier functions, and the physical features appearing in the orbitally resolved spectral functions are discussed.
79 - Jan M. Tomczak 2018
We review many-body effects, their microscopic origin, as well as their impact onto thermoelectricity in correlated narrow-gap semiconductors. Members of this class---such as FeSi and FeSb$_2$---display an unusual temperature dependence in various ob servables: insulating with large thermopowers at low temperatures, they turn bad metals at temperatures much smaller than the size of their gaps. This insulator-to-metal crossover is accompanied by spectral weight-transfers over large energies in the optical conductivity and by a gradual transition from activated to Curie-Weiss-like behaviour in the magnetic susceptibility. We show a retrospective of the understanding of these phenomena, discuss the relation to heavy-fermion Kondo insulators---such as Ce$_3$Bi$_4$Pt$_3$ for which we present new results---and propose a general classification of paramagnetic insulators. From the latter FeSi emerges as an orbital-selective Kondo insulator. Focussing on intermetallics such as silicides, antimonides, skutterudites, and Heusler compounds we showcase successes and challenges for the realistic simulation of transport properties in the presence of electronic correlations. Further, we advert to new avenues in which electronic correlations may contribute to the improvement of thermoelectric performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا