Bass-Serre theory for Lie algebras: a homological approach


الملخص بالإنكليزية

We develop a version of the Bass-Serre theory for Lie algebras (over a field $k$) via a homological approach. We define the notion of fundamental Lie algebra of a graph of Lie algebras and show that this construction yields Mayer-Vietoris sequences. We extend some well known results in group theory to $mathbb{N}$-graded Lie algebras: for example, we show that one relator $mathbb{N}$-graded Lie algebras are iterated HNN extensions with free bases which can be used for cohomology computations and apply the Mayer-Vietoris sequence to give some results about coherence of Lie algebras.

تحميل البحث