ﻻ يوجد ملخص باللغة العربية
One of the major optimizations employed in deep learning frameworks is graph rewriting. Production frameworks rely on heuristics to decide if rewrite rules should be applied and in which order. Prior research has shown that one can discover more optimal tensor computation graphs if we search for a better sequence of substitutions instead of relying on heuristics. However, we observe that existing approaches for tensor graph superoptimization both in production and research frameworks apply substitutions in a sequential manner. Such sequential search methods are sensitive to the order in which the substitutions are applied and often only explore a small fragment of the exponential space of equivalent graphs. This paper presents a novel technique for tensor graph superoptimization that employs equality saturation to apply all possible substitutions at once. We show that our approach can find optimized graphs with up to 16% speedup over state-of-the-art, while spending on average 48x less time optimizing.
An e-graph efficiently represents a congruence relation over many expressions. Although they were originally developed in the late 1970s for use in automated theorem provers, a more recent technique known as equality saturation repurposes e-graphs to
Many compilers, synthesizers, and theorem provers rely on rewrite rules to simplify expressions or prove equivalences. Developing rewrite rules can be difficult: rules may be subtly incorrect, profitable rules are easy to miss, and rulesets must be r
Recent program synthesis techniques help users customize CAD models(e.g., for 3D printing) by decompiling low-level triangle meshes to Constructive Solid Geometry (CSG) expressions. Without loops or functions, editing CSG can require many coordinated
Machine learning algorithms are commonly specified in linear algebra (LA). LA expressions can be rewritten into more efficient forms, by taking advantage of input properties such as sparsity, as well as program properties such as common subexpression
Several scientific studies have reported the existence of the income gap among rideshare drivers based on demographic factors such as gender, age, race, etc. In this paper, we study the income inequality among rideshare drivers due to discriminative