ﻻ يوجد ملخص باللغة العربية
Superconductivity and magnetism are generally incompatible because of the opposing requirement on electron spin alignment. When combined, they produce a multitude of fascinating phenomena, including unconventional superconductivity and topological superconductivity. The emergence of two-dimensional (2D)layered superconducting and magnetic materials that can form nanoscale junctions with atomically sharp interfaces presents an ideal laboratory to explore new phenomena from coexisting superconductivity and magnetic ordering. Here we report tunneling spectroscopy under an in-plane magnetic field of superconductor-ferromagnet-superconductor (S/F/S) tunnel junctions that are made of 2D Ising superconductor NbSe2 and ferromagnetic insulator CrBr3. We observe nearly 100% tunneling anisotropic magnetoresistance (AMR), that is, difference in tunnel resistance upon changing magnetization direction from out-of-plane to inplane. The giant tunneling AMR is induced by superconductivity, particularly, a result of interfacial magnetic exchange coupling and spin-dependent quasiparticle scattering. We also observe an intriguing magnetic hysteresis effect in superconducting gap energy and quasiparticle scattering rate with a critical temperature that is 2 K below the superconducting transition temperature. Our study paves the path for exploring superconducting spintronic and unconventional superconductivity in van der Waals heterostructures.
The effects of the spin-orbit interaction on the tunneling magnetoresistance of ferromagnet/semiconductor/normal metal tunnel junctions are investigated. Analytical expressions for the tunneling anisotropic magnetoresistance (TAMR) are derived within
While the effects of lattice mismatch-induced strain, mechanical strain, as well as the intrinsic strain of thin films are sometimes detrimental, resulting in mechanical deformation and failure, strain can also be usefully harnessed for applications
Thermoelectric effects result from the coupling of charge and heat transport, and can be used for thermometry, cooling and harvesting of thermal energy. The microscopic origin of thermoelectric effects is a broken electron-hole symmetry, which is usu
We demonstrate both theoretically and experimentally two limiting factors in cooling electrons using biased tunnel junctions to extract heat from a normal metal into a superconductor. Firstly, when the injection rate of electrons exceeds the internal
Thermoelectric effects in magnetic nanostructures and the so-called spin caloritronics are attracting much interest. Indeed it provides a new way to control and manipulate spin currents which are key elements of spin-based electronics. Here we report