ﻻ يوجد ملخص باللغة العربية
A subalgebra $mathcal{A}$ of a $C^*$-algebra $mathcal{M}$ is logmodular (resp. has factorization) if the set ${a^*a; atext{ is invertible with }a,a^{-1}inmathcal{A}}$ is dense in (resp. equal to) the set of all positive and invertible elements of $mathcal{M}$. There are large classes of well studied algebras, both in commutative and non-commutative settings, which are known to be logmodular. In this paper, we show that the lattice of projections in a von Neumann algebra $mathcal{M}$ whose ranges are invariant under a logmodular algebra in $mathcal{M}$, is a commutative subspace lattice. Further, if $mathcal{M}$ is a factor then this lattice is a nest. As a special case, it follows that all reflexive (in particular, completely distributive CSL) logmodular subalgebras of type I factors are nest algebras, thus answering a question of Paulsen and Raghupathi [Trans. Amer. Math. Soc., 363 (2011) 2627-2640]. We also discuss some sufficient criteria under which an algebra having factorization is automatically reflexive and is a nest algebra.
We present some general theorems about operator algebras that are algebras of functions on sets, including theories of local algebras, residually finite dimensional operator algebras and algebras that can be represented as the scalar multipliers of a
A free semigroupoid algebra is the closure of the algebra generated by a TCK family of a graph in the weak operator topology. We obtain a structure theory for these algebras analogous to that of free semigroup algebra. We clarify the role of absolute
Given a von Neumann algebra $M$ denote by $S(M)$ and $LS(M)$ respectively the algebras of all measurable and locally measurable operators affiliated with $M.$ For a faithful normal semi-finite trace $tau$ on $M$ let $S(M, tau)$ (resp. $S_0(M, tau)$)
We explore the recently introduced local-triviality dimensions by studying gauge actions on graph $C^*$-algebras, as well as the restrictions of the gauge action to finite cyclic subgroups. For $C^*$-algebras of finite acyclic graphs and finite cycle
We study two classes of operator algebras associated with a unital subsemigroup $P$ of a discrete group $G$: one related to universal structures, and one related to co-universal structures. First we provide connections between universal C*-algebras t