ترغب بنشر مسار تعليمي؟ اضغط هنا

Retrieving and Reading: A Comprehensive Survey on Open-domain Question Answering

153   0   0.0 ( 0 )
 نشر من قبل Fengbin Zhu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Open-domain Question Answering (OpenQA) is an important task in Natural Language Processing (NLP), which aims to answer a question in the form of natural language based on large-scale unstructured documents. Recently, there has been a surge in the amount of research literature on OpenQA, particularly on techniques that integrate with neural Machine Reading Comprehension (MRC). While these research works have advanced performance to new heights on benchmark datasets, they have been rarely covered in existing surveys on QA systems. In this work, we review the latest research trends in OpenQA, with particular attention to systems that incorporate neural MRC techniques. Specifically, we begin with revisiting the origin and development of OpenQA systems. We then introduce modern OpenQA architecture named Retriever-Reader and analyze the various systems that follow this architecture as well as the specific techniques adopted in each of the components. We then discuss key challenges to developing OpenQA systems and offer an analysis of benchmarks that are commonly used. We hope our work would enable researchers to be informed of the recent advancement and also the open challenges in OpenQA research, so as to stimulate further progress in this field.



قيم البحث

اقرأ أيضاً

Open-domain Question Answering (ODQA) has achieved significant results in terms of supervised learning manner. However, data annotation cannot also be irresistible for its huge demand in an open domain. Though unsupervised QA or unsupervised Machine Reading Comprehension (MRC) has been tried more or less, unsupervised ODQA has not been touched according to our best knowledge. This paper thus pioneers the work of unsupervised ODQA by formally introducing the task and proposing a series of key data construction methods. Our exploration in this work inspiringly shows unsupervised ODQA can reach up to 86% performance of supervised ones.
Recent advancements in open-domain question answering (ODQA), i.e., finding answers from large open-domain corpus like Wikipedia, have led to human-level performance on many datasets. However, progress in QA over book stories (Book QA) lags behind de spite its similar task formulation to ODQA. This work provides a comprehensive and quantitative analysis about the difficulty of Book QA: (1) We benchmark the research on the NarrativeQA dataset with extensive experiments with cutting-edge ODQA techniques. This quantifies the challenges Book QA poses, as well as advances the published state-of-the-art with a $sim$7% absolute improvement on Rouge-L. (2) We further analyze the detailed challenges in Book QA through human studies.footnote{url{https://github.com/gorov/BookQA}.} Our findings indicate that the event-centric questions dominate this task, which exemplifies the inability of existing QA models to handle event-oriented scenarios.
Open-domain question answering (QA) aims to find the answer to a question from a large collection of documents.Though many models for single-document machine comprehension have achieved strong performance, there is still much room for improving open- domain QA systems since document retrieval and answer reranking are still unsatisfactory. Golden documents that contain the correct answers may not be correctly scored by the retrieval component, and the correct answers that have been extracted may be wrongly ranked after other candidate answers by the reranking component. One of the reasons is derived from the independent principle in which each candidate document (or answer) is scored independently without considering its relationship to other documents (or answers). In this work, we propose a knowledge-aided open-domain QA (KAQA) method which targets at improving relevant document retrieval and candidate answer reranking by considering the relationship between a question and the documents (termed as question-document graph), and the relationship between candidate documents (termed as document-document graph). The graphs are built using knowledge triples from external knowledge resources. During document retrieval, a candidate document is scored by considering its relationship to the question and other documents. During answer reranking, a candidate answer is reranked using not only its own context but also the clues from other documents. The experimental results show that our proposed method improves document retrieval and answer reranking, and thereby enhances the overall performance of open-domain question answering.
We introduce a new dataset for Question Rewriting in Conversational Context (QReCC), which contains 14K conversations with 80K question-answer pairs. The task in QReCC is to find answers to conversational questions within a collection of 10M web page s (split into 54M passages). Answers to questions in the same conversation may be distributed across several web pages. QReCC provides annotations that allow us to train and evaluate individual subtasks of question rewriting, passage retrieval and reading comprehension required for the end-to-end conversational question answering (QA) task. We report the effectiveness of a strong baseline approach that combines the state-of-the-art model for question rewriting, and competitive models for open-domain QA. Our results set the first baseline for the QReCC dataset with F1 of 19.10, compared to the human upper bound of 75.45, indicating the difficulty of the setup and a large room for improvement.
Turing test was long considered the measure for artificial intelligence. But with the advances in AI, it has proved to be insufficient measure. We can now aim to mea- sure machine intelligence like we measure human intelligence. One of the widely acc epted measure of intelligence is standardized math and science test. In this paper, we explore the progress we have made towards the goal of making a machine smart enough to pass the standardized test. We see the challenges and opportunities posed by the domain, and note that we are quite some ways from actually making a system as smart as a even a middle school scholar.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا