ترغب بنشر مسار تعليمي؟ اضغط هنا

Adversarial Unsupervised Domain Adaptation for Harmonic-Percussive Source Separation

71   0   0.0 ( 0 )
 نشر من قبل Carlos Lordelo
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper addresses the problem of domain adaptation for the task of music source separation. Using datasets from two different domains, we compare the performance of a deep learning-based harmonic-percussive source separation model under different training scenarios, including supervised joint training using data from both domains and pre-training in one domain with fine-tuning in another. We propose an adversarial unsupervised domain adaptation approach suitable for the case where no labelled data (ground-truth source signals) from a target domain is available. By leveraging unlabelled data (only mixtures) from this domain, experiments show that our framework can improve separation performance on the new domain without losing any considerable performance on the original domain. The paper also introduces the Tap & Fiddle dataset, a dataset containing recordings of Scandinavian fiddle tunes along with isolated tracks for foot-tapping and violin.



قيم البحث

اقرأ أيضاً

Source separation for music is the task of isolating contributions, or stems, from different instruments recorded individually and arranged together to form a song. Such components include voice, bass, drums and any other accompaniments.Contrarily to many audio synthesis tasks where the best performances are achieved by models that directly generate the waveform, the state-of-the-art in source separation for music is to compute masks on the magnitude spectrum. In this paper, we compare two waveform domain architectures. We first adapt Conv-Tasnet, initially developed for speech source separation,to the task of music source separation. While Conv-Tasnet beats many existing spectrogram-domain methods, it suffersfrom significant artifacts, as shown by human evaluations. We propose instead Demucs, a novel waveform-to-waveform model,with a U-Net structure and bidirectional LSTM.Experiments on the MusDB dataset show that, with proper data augmentation, Demucs beats allexisting state-of-the-art architectures, including Conv-Tasnet, with 6.3 SDR on average, (and up to 6.8 with 150 extra training songs, even surpassing the IRM oracle for the bass source).Using recent development in model quantization, Demucs can be compressed down to 120MBwithout any loss of accuracy.We also provide human evaluations, showing that Demucs benefit from a large advantagein terms of the naturalness of the audio. However, it suffers from some bleeding,especially between the vocals and other source.
Generative source separation methods such as non-negative matrix factorization (NMF) or auto-encoders, rely on the assumption of an output probability density. Generative Adversarial Networks (GANs) can learn data distributions without needing a para metric assumption on the output density. We show on a speech source separation experiment that, a multi-layer perceptron trained with a Wasserstein-GAN formulation outperforms NMF, auto-encoders trained with maximum likelihood, and variational auto-encoders in terms of source to distortion ratio.
This paper presents an unsupervised method that trains neural source separation by using only multichannel mixture signals. Conventional neural separation methods require a lot of supervised data to achieve excellent performance. Although multichanne l methods based on spatial information can work without such training data, they are often sensitive to parameter initialization and degraded with the sources located close to each other. The proposed method uses a cost function based on a spatial model called a complex Gaussian mixture model (cGMM). This model has the time-frequency (TF) masks and direction of arrivals (DoAs) of sources as latent variables and is used for training separation and localization networks that respectively estimate these variables. This joint training solves the frequency permutation ambiguity of the spatial model in a unified deep Bayesian framework. In addition, the pre-trained network can be used not only for conducting monaural separation but also for efficiently initializing a multichannel separation algorithm. Experimental results with simulated speech mixtures showed that our method outperformed a conventional initialization method.
256 - Yawei Luo , Ping Liu , Tao Guan 2020
We aim at the problem named One-Shot Unsupervised Domain Adaptation. Unlike traditional Unsupervised Domain Adaptation, it assumes that only one unlabeled target sample can be available when learning to adapt. This setting is realistic but more chall enging, in which conventional adaptation approaches are prone to failure due to the scarce of unlabeled target data. To this end, we propose a novel Adversarial Style Mining approach, which combines the style transfer module and task-specific module into an adversarial manner. Specifically, the style transfer module iteratively searches for harder stylized images around the one-shot target sample according to the current learning state, leading the task model to explore the potential styles that are difficult to solve in the almost unseen target domain, thus boosting the adaptation performance in a data-scarce scenario. The adversarial learning framework makes the style transfer module and task-specific module benefit each other during the competition. Extensive experiments on both cross-domain classification and segmentation benchmarks verify that ASM achieves state-of-the-art adaptation performance under the challenging one-shot setting.
Extensive Unsupervised Domain Adaptation (UDA) studies have shown great success in practice by learning transferable representations across a labeled source domain and an unlabeled target domain with deep models. However, previous works focus on impr oving the generalization ability of UDA models on clean examples without considering the adversarial robustness, which is crucial in real-world applications. Conventional adversarial training methods are not suitable for the adversarial robustness on the unlabeled target domain of UDA since they train models with adversarial examples generated by the supervised loss function. In this work, we leverage intermediate representations learned by multiple robust ImageNet models to improve the robustness of UDA models. Our method works by aligning the features of the UDA model with the robust features learned by ImageNet pre-trained models along with domain adaptation training. It utilizes both labeled and unlabeled domains and instills robustness without any adversarial intervention or label requirement during domain adaptation training. Experimental results show that our method significantly improves adversarial robustness compared to the baseline while keeping clean accuracy on various UDA benchmarks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا