ترغب بنشر مسار تعليمي؟ اضغط هنا

AttnMove: History Enhanced Trajectory Recovery via Attentional Network

75   0   0.0 ( 0 )
 نشر من قبل Tong Xia
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A considerable amount of mobility data has been accumulated due to the proliferation of location-based service. Nevertheless, compared with mobility data from transportation systems like the GPS module in taxis, this kind of data is commonly sparse in terms of individual trajectories in the sense that users do not access mobile services and contribute their data all the time. Consequently, the sparsity inevitably weakens the practical value of the data even it has a high user penetration rate. To solve this problem, we propose a novel attentional neural network-based model, named AttnMove, to densify individual trajectories by recovering unobserved locations at a fine-grained spatial-temporal resolution. To tackle the challenges posed by sparsity, we design various intra- and inter- trajectory attention mechanisms to better model the mobility regularity of users and fully exploit the periodical pattern from long-term history. We evaluate our model on two real-world datasets, and extensive results demonstrate the performance gain compared with the state-of-the-art methods. This also shows that, by providing high-quality mobility data, our model can benefit a variety of mobility-oriented down-stream applications.



قيم البحث

اقرأ أيضاً

User response prediction, which aims to predict the probability that a user will provide a predefined positive response in a given context such as clicking on an ad or purchasing an item, is crucial to many industrial applications such as online adve rtising, recommender systems, and search ranking. However, due to the high dimensionality and super sparsity of the data collected in these tasks, handcrafting cross features is inevitably time expensive. Prior studies in predicting user response leveraged the feature interactions by enhancing feature vectors with products of features to model second-order or high-order cross features, either explicitly or implicitly. Nevertheless, these existing methods can be hindered by not learning sufficient cross features due to model architecture limitations or modeling all high-order feature interactions with equal weights. This work aims to fill this gap by proposing a novel architecture Deep Cross Attentional Product Network (DCAP), which keeps cross networks benefits in modeling high-order feature interactions explicitly at the vector-wise level. Beyond that, it can differentiate the importance of different cross features in each network layer inspired by the multi-head attention mechanism and Product Neural Network (PNN), allowing practitioners to perform a more in-depth analysis of user behaviors. Additionally, our proposed model can be easily implemented and train in parallel. We conduct comprehensive experiments on three real-world datasets. The results have robustly demonstrated that our proposed model DCAP achieves superior prediction performance compared with the state-of-the-art models. Public codes are available at https://github.com/zachstarkk/DCAP.
With the increasing deployment of diverse positioning devices and location-based services, a huge amount of spatial and temporal information has been collected and accumulated as trajectory data. Among many applications, trajectory-based location pre diction is gaining increasing attention because of its potential to improve the performance of many applications in multiple domains. This research focuses on trajectory sequence prediction methods using trajectory data obtained from the vehicles in urban traffic network. As Recurrent Neural Network(RNN) model is previously proposed, we propose an improved method of Attention-based Recurrent Neural Network model(ARNN) for urban vehicle trajectory prediction. We introduce attention mechanism into urban vehicle trajectory prediction to explain the impact of network-level traffic state information. The model is evaluated using the Bluetooth data of private vehicles collected in Brisbane, Australia with 5 metrics which are widely used in the sequence modeling. The proposed ARNN model shows significant performance improvement compared to the existing RNN models considering not only the cells to be visited but also the alignment of the cells in sequence.
As a notable machine learning paradigm, the research efforts in the context of reinforcement learning have certainly progressed leaps and bounds. When compared with reinforcement learning methods with the given system model, the methodology of the re inforcement learning architecture based on the unknown model generally exhibits significantly broader universality and applicability. In this work, a new reinforcement learning architecture based on iterative linear quadratic regulator (iLQR) is developed and presented without the requirement of any prior knowledge of the system model, which is termed as an approach of a neural network iterative linear quadratic regulator (NNiLQR). Depending solely on measurement data, this method yields a completely new non-parametric routine for the establishment of the optimal policy (without the necessity of system modeling) through iterative refinements of the neural network system. Rather importantly, this approach significantly outperforms the classical iLQR method in terms of the given objective function because of the innovative utilization of further exploration in the methodology. As clearly indicated from the results attained in two illustrative examples, these significant merits of the NNiLQR method are demonstrated rather evidently.
Drug repositioning is designed to discover new uses of known drugs, which is an important and efficient method of drug discovery. Researchers only use one certain type of Collaborative Filtering (CF) models for drug repositioning currently, like the neighborhood based approaches which are good at mining the local information contained in few strong drug-disease associations, or the latent factor based models which are effectively capture the global information shared by a majority of drug-disease associations. Few researchers have combined these two types of CF models to derive a hybrid model with the advantages of both of them. Besides, the cold start problem has always been a major challenge in the field of computational drug repositioning, which restricts the inference ability of relevant models. Inspired by the memory network, we propose the Hybrid Attentional Memory Network (HAMN) model, a deep architecture combines two classes of CF model in a nonlinear manner. Firstly, the memory unit and the attention mechanism are combined to generate the neighborhood contribution representation to capture the local structure of few strong drug-disease associations. Then a variant version of the autoencoder is used to extract the latent factor of drugs and diseases to capture the overall information shared by a majority of drug-disease associations. In that process, ancillary information of drugs and diseases can help to alleviate the cold start problem. Finally, in the prediction stage, the neighborhood contribution representation is combined with the drug latent factor and disease latent factor to produce the predicted value. Comprehensive experimental results on two real data sets show that our proposed HAMN model is superior to other comparison models according to the AUC, AUPR and HR indicators.
The ability to transfer knowledge to novel environments and tasks is a sensible desiderata for general learning agents. Despite the apparent promises, transfer in RL is still an open and little exploited research area. In this paper, we take a brand- new perspective about transfer: we suggest that the ability to assign credit unveils structural invariants in the tasks that can be transferred to make RL more sample-efficient. Our main contribution is SECRET, a novel approach to transfer learning for RL that uses a backward-view credit assignment mechanism based on a self-attentive architecture. Two aspects are key to its generality: it learns to assign credit as a separate offline supervised process and exclusively modifies the reward function. Consequently, it can be supplemented by transfer methods that do not modify the reward function and it can be plugged on top of any RL algorithm.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا