ﻻ يوجد ملخص باللغة العربية
Commonsense knowledge is crucial for artificial intelligence systems to understand natural language. Previous commonsense knowledge acquisition approaches typically rely on human annotations (for example, ATOMIC) or text generation models (for example, COMET.) Human annotation could provide high-quality commonsense knowledge, yet its high cost often results in relatively small scale and low coverage. On the other hand, generation models have the potential to automatically generate more knowledge. Nonetheless, machine learning models often fit the training data well and thus struggle to generate high-quality novel knowledge. To address the limitations of previous approaches, in this paper, we propose an alternative commonsense knowledge acquisition framework DISCOS (from DIScourse to COmmonSense), which automatically populates expensive complex commonsense knowledge to more affordable linguistic knowledge resources. Experiments demonstrate that we can successfully convert discourse knowledge about eventualities from ASER, a large-scale discourse knowledge graph, into if-then commonsense knowledge defined in ATOMIC without any additional annotation effort. Further study suggests that DISCOS significantly outperforms previous supervised approaches in terms of novelty and diversity with comparable quality. In total, we can acquire 3.4M ATOMIC-like inferential commonsense knowledge by populating ATOMIC on the core part of ASER. Codes and data are available at https://github.com/HKUST-KnowComp/DISCOS-commonsense.
In this paper, we present CogNet, a knowledge base (KB) dedicated to integrating three types of knowledge: (1) linguistic knowledge from FrameNet, which schematically describes situations, objects and events. (2) world knowledge from YAGO, Freebase,
Enthymemes are defined as arguments where a premise or conclusion is left implicit. We tackle the task of generating the implicit premise in an enthymeme, which requires not only an understanding of the stated conclusion and premise but also addition
LocatedNear relation is a kind of commonsense knowledge describing two physical objects that are typically found near each other in real life. In this paper, we study how to automatically extract such relationship through a sentence-level relation cl
A hyperbole is an intentional and creative exaggeration not to be taken literally. Despite its ubiquity in daily life, the computational explorations of hyperboles are scarce. In this paper, we tackle the under-explored and challenging task: sentence
Commonsense knowledge (CSK) supports a variety of AI applications, from visual understanding to chatbots. Prior works on acquiring CSK, such as ConceptNet, have compiled statements that associate concepts, like everyday objects or activities, with pr