Optimizing Optimizers: Regret-optimal gradient descent algorithms


الملخص بالإنكليزية

The need for fast and robust optimization algorithms are of critical importance in all areas of machine learning. This paper treats the task of designing optimization algorithms as an optimal control problem. Using regret as a metric for an algorithms performance, we study the existence, uniqueness and consistency of regret-optimal algorithms. By providing first-order optimality conditions for the control problem, we show that regret-optimal algorithms must satisfy a specific structure in their dynamics which we show is equivalent to performing dual-preconditioned gradient descent on the value function generated by its regret. Using these optimal dynamics, we provide bounds on their rates of convergence to solutions of convex optimization problems. Though closed-form optimal dynamics cannot be obtained in general, we present fast numerical methods for approximating them, generating optimization algorithms which directly optimize their long-term regret. Lastly, these are benchmarked against commonly used optimization algorithms to demonstrate their effectiveness.

تحميل البحث