ترغب بنشر مسار تعليمي؟ اضغط هنا

Observing a Changing Hilbert-Space Inner Product

266   0   0.0 ( 0 )
 نشر من قبل Salini Karuvade
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In quantum mechanics, physical states are represented by rays in Hilbert space $mathscr H$, which is a vector space imbued by an inner product $langle,|,rangle$, whose physical meaning arises as the overlap $langlephi|psirangle$ for $|psirangle$ a pure state (description of preparation) and $langlephi|$ a projective measurement. However, current quantum theory does not formally address the consequences of a changing inner product during the interval between preparation and measurement. We establish a theoretical framework for such a changing inner product, which we show is consistent with standard quantum mechanics. Furthermore, we show that this change is described by a quantum channel, which is tomographically observable, and we elucidate how our result is strongly related to the exploding topic of PT-symmetric quantum mechanics. We explain how to realize experimentally a changing inner product for a qubit in terms of a qutrit protocol with a unitary channel.



قيم البحث

اقرأ أيضاً

We study the Weyl-Wigner transform in the case of discrete variables defined in a Hilbert space of finite prime-number dimensionality $N$. We define a family of Weyl-Wigner transforms as function of a phase parameter. We show that it is only for a sp ecific value of the parameter that all the properties we have examined have a parallel with the case of continuous variables defined in an infinite-dimensional Hilbert space. A geometrical interpretation is briefly discussed.
The geometry of multi-parameter families of quantum states is important in numerous contexts, including adiabatic or nonadiabatic quantum dynamics, quantum quenches, and the characterization of quantum critical points. Here, we discuss the Hilbert-sp ace geometry of eigenstates of parameter-dependent random-matrix ensembles, deriving the full probability distribution of the quantum geometric tensor for the Gaussian Unitary Ensemble. Our analytical results give the exact joint distribution function of the Fubini-Study metric and the Berry curvature. We discuss relations to Levy stable distributions and compare our results to numerical simulations of random-matrix ensembles as well as electrons in a random magnetic field.
We present a brief review of discrete structures in a finite Hilbert space, relevant for the theory of quantum information. Unitary operator bases, mutually unbiased bases, Clifford group and stabilizer states, discrete Wigner function, symmetric inf ormationally complete measurements, projective and unitary t--designs are discussed. Some recent results in the field are covered and several important open questions are formulated. We advocate a geometric approach to the subject and emphasize numerous links to various mathematical problems.
We study the quantum evolution under the combined action of the exponentials of two not necessarily commuting operators. We consider the limit in which the two evolutions alternate at infinite frequency. This case appears in a plethora of situations, both in physics (Feynman integral) and mathematics (product formulas). We focus on the case in which the two evolution times are scaled differently in the limit and generalize standard techniques and results.
187 - Chi-Fang Chen , Kohtaro Kato , 2020
We study whether one can write a Matrix Product Density Operator (MPDO) as the Gibbs state of a quasi-local parent Hamiltonian. We conjecture this is the case for generic MPDO and give supporting evidences. To investigate the locality of the parent H amiltonian, we take the approach of checking whether the quantum conditional mutual information decays exponentially. The MPDO we consider are constructed from a chain of 1-input/2-output (`Y-shaped) completely-positive maps, i.e. the MPDO have a local purification. We derive an upper bound on the conditional mutual information for bistochastic channels and strictly positive channels, and show that it decays exponentially if the correctable algebra of the channel is trivial. We also introduce a conjecture on a quantum data processing inequality that implies the exponential decay of the conditional mutual information for every Y-shaped channel with trivial correctable algebra. We additionally investigate a close but nonequivalent cousin: MPDO measured in a local basis. We provide sufficient conditions for the exponential decay of the conditional mutual information of the measured states, and numerically confirmed they are generically true for certain random MPDO.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا