ﻻ يوجد ملخص باللغة العربية
Softmax classifiers with a very large number of classes naturally occur in many applications such as natural language processing and information retrieval. The calculation of full softmax is costly from the computational and energy perspective. There have been various sampling approaches to overcome this challenge, popularly known as negative sampling (NS). Ideally, NS should sample negative classes from a distribution that is dependent on the input data, the current parameters, and the correct positive class. Unfortunately, due to the dynamically updated parameters and data samples, there is no sampling scheme that is provably adaptive and samples the negative classes efficiently. Therefore, alternative heuristics like random sampling, static frequency-based sampling, or learning-based biased sampling, which primarily trade either the sampling cost or the adaptivity of samples per iteration are adopted. In this paper, we show two classes of distributions where the sampling scheme is truly adaptive and provably generates negative samples in near-constant time. Our implementation in C++ on CPU is significantly superior, both in terms of wall-clock time and accuracy, compared to the most optimized TensorFlow implementations of other popular negative sampling approaches on powerful NVIDIA V100 GPU.
Negative sampling, which samples negative triplets from non-observed ones in knowledge graph (KG), is an essential step in KG embedding. Recently, generative adversarial network (GAN), has been introduced in negative sampling. By sampling negative tr
In multi-agent reinforcement learning, the inherent non-stationarity of the environment caused by other agents actions posed significant difficulties for an agent to learn a good policy independently. One way to deal with non-stationarity is agent mo
Path representations are critical in a variety of transportation applications, such as estimating path ranking in path recommendation systems and estimating path travel time in navigation systems. Existing studies often learn task-specific path repre
We give the first polynomial-time algorithm for performing linear or polynomial regression resilient to adversarial corruptions in both examples and labels. Given a sufficiently large (polynomial-size) training set drawn i.i.d. from distribution D
Large machine learning models achieve unprecedented performance on various tasks and have evolved as the go-to technique. However, deploying these compute and memory hungry models on resource constraint environments poses new challenges. In this work