ترغب بنشر مسار تعليمي؟ اضغط هنا

Semantic Modeling with SUMO

58   0   0.0 ( 0 )
 نشر من قبل Robert B. Allen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Robert B. Allen




اسأل ChatGPT حول البحث

We explore using the Suggested Upper Merged Ontology (SUMO) to develop a semantic simulation. We provide two proof-of-concept demonstrations modeling transitions in a simulated gasoline engine using a general-purpose programming language. Rather than focusing on computationally highly intensive techniques, we explore a less computationally intensive approach related to familiar software engineering testing procedures. In addition, we propose structured representations of terms based on linguistic approaches to lexicography.



قيم البحث

اقرأ أيضاً

With the increased use of AI methods to provide recommendations in the health, specifically in the food dietary recommendation space, there is also an increased need for explainability of those recommendations. Such explanations would benefit users o f recommendation systems by empowering them with justifications for following the systems suggestions. We present the Food Explanation Ontology (FEO) that provides a formalism for modeling explanations to users for food-related recommendations. FEO models food recommendations, using concepts from the explanation domain to create responses to user questions about food recommendations they receive from AI systems such as personalized knowledge base question answering systems. FEO uses a modular, extensible structure that lends itself to a variety of explanations while still preserving important semantic details to accurately represent explanations of food recommendations. In order to evaluate this system, we used a set of competency questions derived from explanation types present in literature that are relevant to food recommendations. Our motivation with the use of FEO is to empower users to make decisions about their health, fully equipped with an understanding of the AI recommender systems as they relate to user questions, by providing reasoning behind their recommendations in the form of explanations.
The human ability to flexibly reason using analogies with domain-general content depends on mechanisms for identifying relations between concepts, and for mapping concepts and their relations across analogs. Building on a recent model of how semantic relations can be learned from non-relational word embeddings, we present a new computational model of mapping between two analogs. The model adopts a Bayesian framework for probabilistic graph matching, operating on semantic relation networks constructed from distributed representations of individual concepts and of relations between concepts. Through comparisons of model predictions with human performance in a novel mapping task requiring integration of multiple relations, as well as in several classic studies, we demonstrate that the model accounts for a broad range of phenomena involving analogical mapping by both adults and children. We also show the potential for extending the model to deal with analog retrieval. Our approach demonstrates that human-like analogical mapping can emerge from comparison mechanisms applied to rich semantic representations of individual concepts and relations.
66 - Yao Zhang , Xu Zhang , Jun Wang 2020
Developing link prediction models to automatically complete knowledge graphs has recently been the focus of significant research interest. The current methods for the link prediction taskhavetwonaturalproblems:1)the relation distributions in KGs are usually unbalanced, and 2) there are many unseen relations that occur in practical situations. These two problems limit the training effectiveness and practical applications of the existing link prediction models. We advocate a holistic understanding of KGs and we propose in this work a unified Generalized Relation Learning framework GRL to address the above two problems, which can be plugged into existing link prediction models. GRL conducts a generalized relation learning, which is aware of semantic correlations between relations that serve as a bridge to connect semantically similar relations. After training with GRL, the closeness of semantically similar relations in vector space and the discrimination of dissimilar relations are improved. We perform comprehensive experiments on six benchmarks to demonstrate the superior capability of GRL in the link prediction task. In particular, GRL is found to enhance the existing link prediction models making them insensitive to unbalanced relation distributions and capable of learning unseen relations.
This work develops novel strategies for optimal planning with semantic observations using continuous state partially observable markov decision processes (CPOMDPs). Two major innovations are presented in relation to Gaussian mixture (GM) CPOMDP polic y approximation methods. While existing methods have many desirable theoretical properties, they are unable to efficiently represent and reason over hybrid continuous-discrete probabilistic models. The first major innovation is the derivation of closed-form variational Bayes GM approximations of Point-Based Value Iteration Bellman policy backups, using softmax models of continuous-discrete semantic observation probabilities. A key benefit of this approach is that dynamic decision-making tasks can be performed with complex non-Gaussian uncertainties, while also exploiting continuous dynamic state space models (thus avoiding cumbersome and costly discretization). The second major innovation is a new clustering-based technique for mixture condensation that scales well to very large GM policy functions and belief functions. Simulation results for a target search and interception task with semantic observations show that the GM policies resulting from these innovations are more effective than those produced by other state of the art policy approximations, but require significantly less modeling overhead and online runtime cost. Additional results show the robustness of this approach to model errors and scaling to higher dimensions.
Automatic melody generation has been a long-time aspiration for both AI researchers and musicians. However, learning to generate euphonious melodies has turned out to be highly challenging. This paper introduces 1) a new variant of variational autoen coder (VAE), where the model structure is designed in a modularized manner in order to model polyphonic and dynamic music with domain knowledge, and 2) a hierarchical encoding/decoding strategy, which explicitly models the dependency between melodic features. The proposed framework is capable of generating distinct melodies that sounds natural, and the experiments for evaluating generated music clips show that the proposed model outperforms the baselines in human evaluation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا