ﻻ يوجد ملخص باللغة العربية
We introduce a three-parameter family of up-down ordered Chinese restaurant processes ${rm PCRP}^{(alpha)}(theta_1,theta_2)$, $alphain(0,1)$, $theta_1,theta_2ge 0$, generalising the two-parameter family of Rogers and Winkel. Our main result establishes self-similar diffusion limits, ${rm SSIP}^{(alpha)}(theta_1,theta_2)$-evolutions generalising existing families of interval partition evolutions. We use the scaling limit approach to extend stationarity results to the full three-parameter family, identifying an extended family of Poisson--Dirichlet interval partitions. Their ranked sequence of interval lengths has Poisson--Dirichlet distribution with parameters $alphain(0,1)$ and $theta:=theta_1+theta_2-alphage-alpha$, including for the first time the usual range of $theta>-alpha$ rather than being restricted to $thetage 0$. This has applications to Fleming--Viot processes, nested interval partition evolutions and tree-valued Markov processes, notably relying on the extended parameter range.
Forman et al. (2020+) constructed $(alpha,theta)$-interval partition evolutions for $alphain(0,1)$ and $thetage 0$, in which the total sums of interval lengths (total mass) evolve as squared Bessel processes of dimension $2theta$, where $thetage 0$ a
We study composition-valued continuous-time Markov chains that appear naturally in the framework of Chinese Restaurant Processes (CRPs). As time evolves, new customers arrive (up-step) and existing customers leave (down-step) at suitable rates derive
We construct a stationary Markov process corresponding to the evolution of masses and distances of subtrees along the spine from the root to a branch point in a conjectured stationary, continuum random tree-valued diffusion that was proposed by David
The two parameter Poisson-Dirichlet distribution $PD(alpha,theta)$ is the distribution of an infinite dimensional random discrete probability. It is a generalization of Kingmans Poisson-Dirichlet distribution. The two parameter Dirichlet process $Pi_
Consider a two-type Moran population of size $N$ subject to selection and mutation, which is immersed in a varying environment. The population is susceptible to exceptional changes in the environment, which accentuate the selective advantage of the f