Discovery of unconventional chiral charge order in kagome superconductor KV3Sb5


الملخص بالإنكليزية

Intertwining quantum order and nontrivial topology is at the frontier of condensed matter physics. A charge density wave (CDW) like order with orbital currents has been proposed as a powerful resource for achieving the quantum anomalous Hall effect in topological materials and for the hidden phase in cuprate high-temperature superconductors. However, the experimental realization of such an order is challenging. Here we use high-resolution scanning tunnelling microscopy (STM) to discover an unconventional charge order in a kagome material KV3Sb5, with both a topological band structure and a superconducting ground state. Through both topography and spectroscopic imaging, we observe a robust 2x2 superlattice. Spectroscopically, an energy gap opens at the Fermi level, across which the 2x2 charge modulation exhibits an intensity reversal in real-space, signaling charge ordering. At impurity-pinning free region, the strength of intrinsic charge modulations further exhibits chiral anisotropy with unusual magnetic field response. Theoretical analysis of our experiments suggests a tantalizing unconventional chiral CDW in the frustrated kagome lattice, which can not only lead to large anomalous Hall effect with orbital magnetism, but also be a precursor of unconventional superconductivity.

تحميل البحث