ﻻ يوجد ملخص باللغة العربية
The rapid development of large pre-trained language models has greatly increased the demand for model compression techniques, among which quantization is a popular solution. In this paper, we propose BinaryBERT, which pushes BERT quantization to the limit by weight binarization. We find that a binary BERT is hard to be trained directly than a ternary counterpart due to its complex and irregular loss landscape. Therefore, we propose ternary weight splitting, which initializes BinaryBERT by equivalently splitting from a half-sized ternary network. The binary model thus inherits the good performance of the ternary one, and can be further enhanced by fine-tuning the new architecture after splitting. Empirical results show that our BinaryBERT has only a slight performance drop compared with the full-precision model while being 24x smaller, achieving the state-of-the-art compression results on the GLUE and SQuAD benchmarks.
Transformer based models, like BERT and RoBERTa, have achieved state-of-the-art results in many Natural Language Processing tasks. However, their memory footprint, inference latency, and power consumption are prohibitive efficient inference at the ed
Recently, generative data-free quantization emerges as a practical approach that compresses the neural network to low bit-width without access to real data. It generates data to quantize the network by utilizing the batch normalization (BN) statistic
We study the challenging task of neural network quantization without end-to-end retraining, called Post-training Quantization (PTQ). PTQ usually requires a small subset of training data but produces less powerful quantized models than Quantization-Aw
Recently, transformer-based language models such as BERT have shown tremendous performance improvement for a range of natural language processing tasks. However, these language models usually are computation expensive and memory intensive during infe
Chemically Peculiar (CP) stars have been subject of systematic research since more than 50 years. With the discovery of pulsation of some of the cool CP stars, the availability of advanced spectropolarimetric instrumentation and high signal- to-noise