ترغب بنشر مسار تعليمي؟ اضغط هنا

TexSmart: A Text Understanding System for Fine-Grained NER and Enhanced Semantic Analysis

90   0   0.0 ( 0 )
 نشر من قبل Lemao Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This technique report introduces TexSmart, a text understanding system that supports fine-grained named entity recognition (NER) and enhanced semantic analysis functionalities. Compared to most previous publicly available text understanding systems and tools, TexSmart holds some unique features. First, the NER function of TexSmart supports over 1,000 entity types, while most other public tools typically support several to (at most) dozens of entity types. Second, TexSmart introduces new semantic analysis functions like semantic expansion and deep semantic representation, that are absent in most previous systems. Third, a spectrum of algorithms (from very fast algorithms to those that are relatively slow but more accurate) are implemented for one function in TexSmart, to fulfill the requirements of different academic and industrial applications. The adoption of unsupervised or weakly-supervised algorithms is especially emphasized, with the goal of easily updating our models to include fresh data with less human annotation efforts. The main contents of this report include major functions of TexSmart, algorithms for achieving these functions, how to use the TexSmart toolkit and Web APIs, and evaluation results of some key algorithms.



قيم البحث

اقرأ أيضاً

Text style transfer aims to controllably generate text with targeted stylistic changes while maintaining core meaning from the source sentence constant. Many of the existing style transfer benchmarks primarily focus on individual high-level semantic changes (e.g. positive to negative), which enable controllability at a high level but do not offer fine-grained control involving sentence structure, emphasis, and content of the sentence. In this paper, we introduce a large-scale benchmark, StylePTB, with (1) paired sentences undergoing 21 fine-grained stylistic changes spanning atomic lexical, syntactic, semantic, and thematic transfers of text, as well as (2) compositions of multiple transfers which allow modeling of fine-grained stylistic changes as building blocks for more complex, high-level transfers. By benchmarking existing methods on StylePTB, we find that they struggle to model fine-grained changes and have an even more difficult time composing multiple styles. As a result, StylePTB brings novel challenges that we hope will encourage future research in controllable text style transfer, compositional models, and learning disentangled representations. Solving these challenges would present important steps towards controllable text generation.
Numerals that contain much information in financial documents are crucial for financial decision making. They play different roles in financial analysis processes. This paper is aimed at understanding the meanings of numerals in financial tweets for fine-grained crowd-based forecasting. We propose a taxonomy that classifies the numerals in financial tweets into 7 categories, and further extend some of these categories into several subcategories. Neural network-based models with word and character-level encoders are proposed for 7-way classification and 17-way classification. We perform backtest to confirm the effectiveness of the numeric opinions made by the crowd. This work is the first attempt to understand numerals in financial social media data, and we provide the first comparison of fine-grained opinion of individual investors and analysts based on their forecast price. The numeral corpus used in our experiments, called FinNum 1.0 , is available for research purposes.
Existing system dealing with online complaint provides a final decision without explanations. We propose to analyse the complaint text of internet fraud in a fine-grained manner. Considering the complaint text includes multiple clauses with various f unctions, we propose to identify the role of each clause and classify them into different types of fraud element. We construct a large labeled dataset originated from a real finance service platform. We build an element identification model on top of BERT and propose additional two modules to utilize the context of complaint text for better element label classification, namely, global context encoder and label refiner. Experimental results show the effectiveness of our model.
The patterns in which the syntax of different languages converges and diverges are often used to inform work on cross-lingual transfer. Nevertheless, little empirical work has been done on quantifying the prevalence of different syntactic divergences across language pairs. We propose a framework for extracting divergence patterns for any language pair from a parallel corpus, building on Universal Dependencies. We show that our framework provides a detailed picture of cross-language divergences, generalizes previous approaches, and lends itself to full automation. We further present a novel dataset, a manually word-aligned subset of the Parallel UD corpus in five languages, and use it to perform a detailed corpus study. We demonstrate the usefulness of the resulting analysis by showing that it can help account for performance patterns of a cross-lingual parser.
Election manifestos document the intentions, motives, and views of political parties. They are often used for analysing a partys fine-grained position on a particular issue, as well as for coarse-grained positioning of a party on the left--right spec trum. In this paper we propose a two-stage model for automatically performing both levels of analysis over manifestos. In the first step we employ a hierarchical multi-task structured deep model to predict fine- and coarse-grained positions, and in the second step we perform post-hoc calibration of coarse-grained positions using probabilistic soft logic. We empirically show that the proposed model outperforms state-of-art approaches at both granularities using manifestos from twelve countries, written in ten different languages.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا